Neuroscience
-
A control circuit is proposed to model the command of saccadic eye movements. Its wiring is deduced from a mathematical constraint, i.e. the necessity, for motor orders processing, to compute an approximate inverse function of the bio-mechanical function of the moving plant, here the bio-mechanics of the eye. This wiring is comparable to the anatomy of the cerebellar pathways. ⋯ The novelty of this model of movement control is that its structure is entirely deduced from mathematical and physical constraints, and is consistent with general anatomy, cell connectivity and functioning of the cerebellar pathways. Even the learning rules can be deduced from calculation, and they reproduce long term depression, the learning process which takes place in the dendritic arborization of the Purkinje cells. This approach, based on the laws of mathematics and physics, appears thus as an efficient way of understanding signal processing in the motor system.
-
Comparative Study
Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice.
Dopamine (DA) is a neurotransmitter that has been implicated in a wide variety of psychiatric disorders that include attention deficit-hyperactivity disorder (ADHD), schizophrenia, and drug abuse. Recently, we have been working with a mouse in which the gene for the DA transporter (DAT) has been disrupted. This mouse is hyperactive in the open field, displays an inability to inhibit ongoing behaviors, and is deficient on learning and memory tasks. ⋯ Since the DAT gene is disrupted in the KO mouse, these findings suggest that dopaminergic mechanisms may mediate the WT responses, whereas non-dopaminergic systems predominate in the mutant. In the mutants, it appears that limbic areas and non-dopaminergic transmitter systems within these brain regions may mediate responses to psychostimulants. Inasmuch as the KO mouse may represent a useful animal model for ADHD and because psychostimulants such as cocaine are reinforcing to these animals, our results may provide some useful insights into the neural mechanisms-other than DA-that may contribute to the symptoms of ADHD and/or drug abuse in human patients.
-
Intermittent hypoxia (IH) during sleep, a characteristic feature of sleep-disordered breathing (SDB) is associated with time-dependent apoptosis and spatial learning deficits in the adult rat. The mechanisms underlying such neurocognitive deficits remain unclear. Activation of the cAMP-response element binding protein (CREB) transcription factor mediates critical components of neuronal survival and memory consolidation in mammals. ⋯ Initial IH-induced impairments in spatial learning were followed by partial functional recovery starting at 14 days of IH exposure. We postulate that IH elicits time-dependent changes in CREB phosphorylation and nuclear binding that may account for decreased neuronal survival and spatial learning deficits in the adult rat. We suggest that CREB changes play an important role in the neurocognitive morbidity of SDB patients.
-
Apolipoprotein E (apoE) alters the pathophysiology of Alzheimer's disease, but its mechanism is not fully understood. We examined the effects of recombinant human apoE3 and apoE4 on the neuronal calcium response to N-methyl-D-aspartate (NMDA), and compared them to their toxicity. ApoE4 (100 nM) significantly increased the resting calcium (by 70%) and the calcium response to NMDA (by 185%), whereas similar changes were not obtained in apoE3-treated neurons. ⋯ Both the receptor-associated protein, which inhibits interaction of apoE with members of the LDL receptor family, including the low-density lipoprotein receptor-related protein (LRP), and activated alpha2-macroglobulin, another LRP ligand, prevented apoE4-induced enhancement of the calcium response to NMDA, resting calcium levels, and neurotoxicity. A tandem apoE peptide (100 nM) containing only the receptor binding region residues also eliminated the enhanced calcium signaling and neurotoxicity by apoE4. Taken together, our data demonstrate that differential effects of apoE3 and apoE4 on the calcium signaling in neurons correlate with their effect on neurotoxicity, which are secondary to receptor binding.
-
Comparative Study
Transforming growth factor-alpha changes firing properties of developing neocortical GABAergic neurons by down-regulation of voltage-gated potassium currents.
Transforming growth factor-alpha (TGFalpha), a member of the epidermal growth factor family, has neurotrophic actions on postmitotic neurons. We examined the chronic effects of TGFalpha on the electrophysiological properties of one type of GABAergic neuron, identified by its bipolar morphology, in neocortical primary culture. Approximately 85% of the bipolar neurons were GABA-immunoreactive. ⋯ Voltage-clamp recordings from the bipolar neurons indicated that chronic treatment with TGFalpha markedly decreased the current densities of slow delayed rectifier (IK) and transient voltage-gated potassium currents, whereas the treatment had no effect on voltage-gated sodium current and fast delayed rectifier potassium current densities. Reverse transcription-polymerase chain reaction analysis of potassium channel mRNA in the bipolar neurons revealed that the reduction in the IK current density was caused by Kv2.2 mRNA down-regulation. Thus, chronic treatment with TGFalpha down-regulated slow delayed rectifier and transient voltage-gated potassium currents, and in parallel, suppressed repetitive generation of action potentials in the cortical GABAergic neurons.