Neuroscience
-
Comparative Study
Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission.
Recurrent networks of neurons communicating via excitatory connections are common in the nervous system. In the absence of mechanisms to control firing (collectively termed negative feedback), these networks are likely to be bistable and unable to meaningfully encode input signals. In most recurrent circuits, negative feedback is provided by a specialized subpopulation of interneurons, but such neurons are absent from some systems, which therefore require other forms of negative feedback. ⋯ In addition, simulation revealed that neurons in networks with inhibitory contransmission fired in erratic bursts, a phenomenon observed in neurons in unparalysed tissue. Thus, either inhibitory contransmission or AHPs, or both, can allow recurrent networks of AH/Dogiel type II neurons to encode ongoing inputs in a biologically useful way. These neurons appear to be intrinsic primary afferent neurons (IPANs), which implies that the IPANs in a region act in a coordinated fashion.
-
Comparative Study
Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles.
The medial temporal lobe, including the entorhinal cortex, the amygdala and the hippocampus, has an important role in learning and memory, and its circuits exhibit synaptic plasticity (long-term potentiation [LTP]). The entorhinal cortex is positioned to exert a potent influence on the amygdala and the hippocampus given its extensive monosynaptic projections to both areas. We therefore studied the effects of activation of the entorhinal cortex with simultaneous recording of LTP in the hippocampus and amygdala in the anesthetized rat. theta Burst stimulation of the lateral entorhinal cortex induced LTP simultaneously in the basal amygdaloid nucleus and in the dentate gyrus. ⋯ In addition we found that the basal amygdala as well as the dentate gyrus sustained late-phase LTP (10 h) which may participate in memory encoding and/or modulation processes. Overall, the results suggest a coordinating role for the entorhinal cortex by simultaneously modulating activity and plasticity in these structures, albeit through different mechanisms. Interactive encoding of this sort is believed to endow memories with a different, more integrative, quality than when either pathway is activated alone.
-
Comparative Study
Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking.
Hippocampal ripple oscillations (140-200 Hz) are believed to be critically involved in the consolidation of memory traces during slow-wave sleep (SWS). We investigated the temporal pattern of ripple occurrence in relation to sleep phases following different types of waking. Amphetamine, the atypical wakening drug modafinil or non-pharmacological sleep deprivation lead to an increased ripple occurrence ("rebound") during the subsequent SWS episode. ⋯ At the end of the recovery period paradoxical sleep (PS) acted like waking, elevating ripple occurrence during subsequent SWS episodes. On the other hand, PS decreased ripple occurrence if recovery from the rebound was not yet complete. Thus occurrence and structure of ripple oscillations are regulated by the timing and duration of previous SWS, PS and waking episodes.
-
Comparative Study
The rodent amygdala contributes to the production of cannabinoid-induced antinociception.
The amygdala is a temporal lobe region that is implicated in emotional information processing. The amygdala also is associated with the processing and modulation of pain sensation. Recently, we demonstrated that in nonhuman primates, the amygdala is necessary for the full expression of cannabinoid-induced antinociception [J Neurosci 21 (2001) 8238]. ⋯ In rats treated with intra-CeA muscimol, however, these effects of WIN55,212-2 were significantly reduced. The results constitute the first causal data demonstrating the necessity of descending pain-modulatory circuitry (of which the CeA is a component) for the full expression of cannabinoid-induced antinociception in the rat. Furthermore, the results complement previous findings suggesting an overlap in neural circuitry activated by opioids and cannabinoids.
-
Comparative Study
Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation.
The KCNQ family of voltage-dependent non-inactivating K+ channels is composed of five members, four of which (KCNQ2-5) are expressed in the CNS and are responsible for the M-current. Mutations in either KCNQ2 or KCNQ3 lead to a hereditary form of dominant generalized epilepsy. Using specific antisera to the KCNQ2, KCNQ3 and KCNQ5 subunits, we found that KCNQ3 co-immunoprecipitated with KCNQ2 and KCNQ5 subunits, but no association was detected between KCNQ2 and KCNQ5. ⋯ In the sclerotic areas of the CA fields of epileptic patients, a marked loss of KCNQ5 immunoreactive pyramidal neurons was found in relation with the loss of neurons in these regions. However, in the regions adjacent to the sclerotic areas, the distribution and intensity of KCNQ5 immunostaining was apparently normal. The widespread distribution of KCNQ5 subunits, its persistence in pharmacoresistant epilepsy, along with the significant role of the M-current in the control of neuronal excitability, makes this protein a possible target for the development of anticonvulsant drugs.