Neuroscience
-
Dynorphin A (1-17), an endogenous opioid neuropeptide, can have pathophysiological consequences at high concentrations through actions involving glutamate receptors. Despite evidence of excitotoxicity, the basic mechanisms underlying dynorphin-induced cell death have not been explored. To address this question, we examined the role of caspase-dependent apoptotic events in mediating dynorphin A (1-17) toxicity in embryonic mouse striatal neuron cultures. ⋯ AMPA/kainate receptor blockade significantly attenuated dynorphin A-induced cytochrome c release and/or caspase-3 activity, while NMDA or opioid receptor blockade typically failed to prevent the apoptotic response. Last, dynorphin-induced caspase-3 activation was mimicked by the ampakine CX546 [1-(1,4-benzodioxan-6-ylcarbonyl)piperidine], which suggests that the activation of AMPA receptor subunits may be sufficient to mediate toxicity in striatal neurons. These findings provide novel evidence that dynorphin-induced striatal neurotoxicity is mediated by a caspase-dependent apoptotic mechanism that largely involves AMPA/kainate receptors.
-
Recent experimental and clinical studies suggest that estrogen may be an important factor influencing neuronal function during normal and pathological aging. Using different behavioral paradigms in rodents, estrogen replacement was shown to enhance learning and memory as well as attenuate learning deficits associated with cholinergic impairment. The goal of this study was to determine whether cognitive sensitivity to estrogen manipulations (short-term ovariectomy and chronic estrogen replacement) is affected by aging. ⋯ These data indicate that aging processes may substantially modulate the mechanisms of estrogen action. A "time window" during which hormone replacement must be initiated in order to be effective could be determined in terms of the stages of reproductive senescence. This study is the first to clearly demonstrate that the cognitive effects of estrogen replacement are still preserved during the initial stages of reproductive aging (irregular cyclicity) and dramatically limited as aging progresses (cessation of proestrus).
-
Head-direction (HD) cells in subcortical areas of the mammalian brain are tuned to a particular head direction in space; a population of such neurons forms a neural compass that may be relevant for spatial navigation. The development of neural circuits constituting the head-direction system is poorly understood. Inspired by electrophysiological experiments about the role of recurrent synaptic connections, we investigate a learning rule that teaches neurons to amplify feed-forward inputs. ⋯ That is, during head movements in darkness, neurons resemble HD cells by maintaining a fixed tuning to head direction. The proposed learning rule exhibits similarities with known forms of anti-Hebbian synaptic plasticity. We conclude that selective amplification could serve as a general principle for the synaptic development of multimodal feedback circuits in the brain.
-
Comparative Study
Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord.
The inhibitory neurotransmitter GABA is synthesized by glutamic acid decarboxylase (GAD), and two isoforms of this enzyme exist: GAD65 and GAD67. Immunocytochemical studies of the spinal cord have shown that whilst both are present in the dorsal horn, GAD67 is the predominant form in the ventral horn. The present study was carried out to determine the pattern of coexistence of the two GAD isoforms in axonal boutons in different laminae of the cord, and also to examine the relation of the GADs to the glycine transporter GLYT2 (a marker for glycinergic axons), since many spinal neurons are thought to use GABA and glycine as co-transmitters. ⋯ GLYT2 immunoreactivity was associated with many GAD-immunoreactive boutons; however, this did not appear to be related to the pattern of GAD expression. It has recently been reported that there is selective depletion of GAD65, accompanied by a loss of GABAergic inhibition, in the ipsilateral dorsal horn in rats that have undergone peripheral nerve injuries [J Neurosci 22 (2002) 6724]. Our finding that some boutons in the superficial laminae showed relatively high levels of GAD65 and low levels of GAD67 immunoreactivity is therefore significant, since a reduction in GABA synthesis in these axons may contribute to neuropathic pain.
-
Comparative Study
Sex differences in the hippocampal dentate gyrus of the guinea-pig before puberty.
The aim of the present research was to ascertain the presence of sex differences in the hippocampal dentate gyrus of the guinea-pig, a long-gestation rodent which gives birth to mature young and whose brain is at a more advanced stage of maturation at birth than that of the rat and mouse. The brains of neonatal (15-16 days old) and prepubescent (45-46 days old) male and female guinea pigs were Golgi-Cox stained. Granule cells were sampled from the upper (suprapyramidal) and lower (infrapyramidal) blade of the septal dentate gyrus and their dendritic tree and soma were measured. ⋯ In the lower blade the granule cells showed very few sex differences in both neonatal and prepubescent animals. This study shows wide dynamically changing sex differences in the granule cells located in the upper blade of the septal dentate gyrus, but almost no differences in the lower blade. These results demonstrate that sex differences are not ubiquitous in the dentate gyrus and suggest that the lower blade, unlike the upper blade, might be involved in non-sexually dimorphic behaviors.