Neuroscience
-
Comparative Study
Impaired dendritic spine maturation in GABAA receptor alpha1 subunit knock out mice.
In this study we investigated the functional implications of GABAA receptor alpha1 subunit deletion on dendritic arborization and spine maturation in the visual cortex. This subunit is normally strongly upregulated during early postnatal development. ⋯ In contrast, dendritic arborization was not altered in these mice. We propose that an increased efficacy of the inhibitory synaptic transmission in the alpha1 knock out mice may lead to an enhancement of the outgrowth of filopodia around eye opening, but to a failure in spine maturation at later stages.
-
Tolerance develops to the antinociceptive effects of morphine with repeated microinjections into the ventrolateral periaqueductal gray (PAG). This tolerance could be caused by adaptations within the PAG or anywhere along the descending pathway (rostral ventromedial medulla to spinal cord). If tolerance is caused by a change along the descending pathway, then tolerance should develop to direct activation of PAG output neurons. ⋯ Moreover, microinjection of bicuculline or kainate produced comparable antinociception in rats pretreated with these drugs and saline-treated control rats. These data demonstrate that repeated activation of ventrolateral PAG output neurons is not sufficient to produce tolerance. Thus, tolerance must be caused by a change in neurons preceding output neurons in this circuit, presumably opioid-sensitive GABAergic neurons.
-
A delayed-matching spatial working memory protocol in a 5-arm maze was used to test the hypothesis of differential roles for central nicotinic and muscarinic cholinergic receptors in mediating task performance. In experiment 1, using a within subjects-repeated design, groups of C57Bl/6 mice, previously trained to criterion with a 4 h retention interval separating presentation and test phases, received i.p. injections of either saline, scopolamine (0.8 mg/kg), mecamylamine (8.0 mg/kg), or the combination of scopolamine and mecamylamine before re-testing. Injections were given either, a) 15 min pre-presentation or, b) 30 s, c) 15 min, d) 3 h 45 min post-presentation in order to differentially affect the acquisition, trace maintenance and recall phases. ⋯ Although the data show that central nicotinic and muscarinic antagonists both modulate working memory performance, they indicate first, that scopolamine-induced "amnesia" results, not from selective post-synaptic M1 muscarinic blockade but from indirect over-activation of nicotinic receptors. Second, the observation of high levels of retention although nicotinic and muscarinic receptors had undergone combined blockade during a large part of the retention interval is incompatible with the concept that test-induced activation of central cholinergic neurones mediates memory trace maintenance. Finally, taken with data from experiment 2, using a short (20 min) treatment-to-test interval, we conclude that central nicotinic receptors play a key role in attentional processes enabling working memory trace access during retrieval.
-
Na(+) currents were recorded using patch-clamp techniques from small-diameter (<25 micrometers) dorsal root ganglion neurons, cultured from adult rats (>150 g). Late Na(+) currents maintained throughout long-duration voltage-clamp steps (>/=200 ms) were of two types: a low-threshold, tetrodotoxin-sensitive (TTX-s) current that was largely blocked by 200 nM TTX, and a high-threshold, TTX-resistant (TTX-r) current. TTX-s late current was found in approximately 28% (10/36) of small-diameter neurons and was recorded only in neurons exhibiting TTX-s transient current. ⋯ We suggest that TTX-s late sodium current results from channel openings different from those generating transient current. As in large-diameter sensory neurons, TTX-s channels generating late openings may play a key role in controlling membrane excitability. In contrast, a single population of high-threshold TTX-r channels may account for both transient and late TTX-r currents.
-
Comparative Study
Immune rejection of a facial nerve xenograft does not prevent regeneration and the return of function: an experimental study.
Nerve grafts may be used to repair damaged peripheral nerves and also to facilitate spinal cord regeneration after experimental trauma. Little is known, however, about the possible use of xenografts and the role of immune rejection in the outcome of repair. ⋯ With longer (15-20 mm) transplants, however, restoration of eye closure becomes dependent on cyclosporine administration. Thus, in a situation where nerve repair does not occur without a graft, a host immune attack has an attritional effect which is not sufficient to prevent repair over short distances, but becomes obvious when the regenerating fibres have to cross longer segments of transplanted tissue.