Neuroscience
-
Comparative Study
The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats.
There are significant decrements in sleep with age. These include fragmentation of sleep, increased wake time, decrease in the length of sleep bouts, decrease in the amplitude of the diurnal rhythm of sleep, decrease in rapid eye movement sleep and a profound decrease in electroencephalogram Delta power (0.3-4 Hz). Old rats also have less sleep in response to 12 h-prolonged wakefulness (W) indicating a reduction in sleep drive with age. ⋯ In experiment 2, old rats kept awake for 6 h (first half of lights-on period) accumulated more AD compared with young rats. If old rats have more AD then why do they sleep less? To investigate whether changes in sensitivity of the AD receptor contribute to the decline in sleep, experiments 3 and 4 determined that for the same concentration of AD or the AD receptor 1 agonist, cyclohexyladenosine, old rats have less sleep compared with young rats. We conclude that even though old rats have more AD, a reduction in the sensitivity of the AD receptor to the ligand does not transduce the AD signal at the same strength as in young rats and may be a contributing factor to the decline in sleep drive in the elderly.
-
Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortality following traumatic brain injury (TBI) as it increases intracranial pressure, impairs cerebral perfusion and oxygenation, and contributes to additional ischemic injuries. Classically, two major types of traumatic brain edema exist: "vasogenic" due to blood-brain barrier (BBB) disruption resulting in extracellular water accumulation and "cytotoxic/cellular" due to sustained intracellular water collection. A third type, "osmotic" brain edema is caused by osmotic imbalances between blood and tissue. ⋯ For many years, vasogenic brain edema was accepted as the prevalent edema type following TBI. The development of mechanical TBI models ("weight drop," "fluid percussion injury," and "controlled cortical impact injury") and the use of magnetic resonance imaging, however, revealed that "cytotoxic" edema is of decisive pathophysiological importance following TBI as it develops early and persists while BBB integrity is gradually restored. These findings suggest that cytotoxic and vasogenic brain edema are two entities which can be targeted simultaneously or according to their temporal prevalence.
-
Charles Darwin, in his Origin of the Species, noted that different species of finches on the Galapagos Islands had adapted their beak size based on where they sought their food. Homer Smith, in his book From Fish to Philosopher, discussed the evolution of the nephron from a single conduit in salt water vertebrates, to nephrons with large glomerular capillaries and proximal and distal tubules in fresh water vertebrates, to smaller glomerular capillaries in amphibians, to nephrons with loops of Henle to allow for urinary concentration and dilution in mammals. ⋯ With the recent discovery of aquaporin water channels, our understanding of volume regulation has been greatly enhanced. This article reviews current knowledge regarding: 1) the unifying hypothesis of body fluid volume regulation; 2) brain aquaporins and their role in pathophysiologic states; and 3) function and regulation of renal aquaporins in the syndrome of inappropriate antidiuretic hormone secretion (SIADH).
-
Different forms of electrical paroxysms in experimental animals mimic the patterns of absence seizures associated with spike-wave complexes at approximately 3 Hz and of Lennox-Gastaut seizures with spike-wave or polyspike-wave complexes at approximately 1.5-2.5 Hz, intermingled with fast runs at 10-20 Hz. Both these types of electrical seizures are preferentially generated during slow-wave sleep. Here, we challenge the hypothesis of a subcortical pacemaker that would account for suddenly generalized spike-wave seizures as well as the idea of an exclusive role of synaptic excitation in the generation of paroxysmal depolarizing components, and we focus on three points, based on multiple intracellular and field potential recordings in vivo that are corroborated by some clinical studies: (a) the role of neocortical bursting neurons, especially fast-rhythmic-bursting neurons, and of very fast oscillations (ripples, 80-200 Hz) in seizure initiation; (b) the cortical origin of both these types of electrical paroxysms, the synaptic propagation of seizures from one to other, local and distant, cortical sites, finally reaching the thalamus, where the synchronous cortical firing excites thalamic reticular inhibitory neurons and thus leads to steady hyperpolarization and phasic inhibitory postsynaptic potentials in a majority of thalamocortical neurons, which might explain the obliteration of signals from the external world and the unconsciousness during absence seizures; and (c) the cessation of seizures, whose cellular mechanisms have only begun to be investigated and remain an open avenue for research.
-
The epithelial cells of the choroid plexuses secrete cerebrospinal fluid (CSF), by a process which involves the transport of Na(+), Cl(-) and HCO(3)(-) from the blood to the ventricles of the brain. The unidirectional transport of ions is achieved due to the polarity of the epithelium, i.e. the ion transport proteins in the blood-facing (basolateral) membrane are different to those in the ventricular (apical) membrane. The movement of ions creates an osmotic gradient which drives the secretion of H(2)O. ⋯ Aquaporin 1 mediates water transport at the apical membrane, but the route across the basolateral membrane is unknown. A model of CSF secretion by the mammalian choroid plexus is proposed which accommodates these proteins. The model also explains the mechanisms by which K(+) is transported from the CSF to the blood.