Neuroscience
-
The enteric nervous system plays an integral role in the gastrointestinal tract. Within this intricate network, enteric glia are crucial in the maintenance of normal bowel function, yet their signaling mechanisms are poorly understood. Enteric glia, and not enteric neurons, selectively responded to lysophosphatidic acid (LPA), a product of phosphatidylcholine metabolism, with dose-dependent calcium (Ca(2+)) signaling over a range from 100 pM to 10 microM. ⋯ Inhibition of the inositol 1,4,5-trisphosphate (IP(3)) receptor with 200 microM 2-aminoethoxydiphenylborate (2APB) abolished LPA signals. RT-PCR analysis demonstrated the presence of two LPA-coupled endothelial differentiation gene (EDG) receptor mRNAs (EDG-2 and EDG-7) in myenteric plexus primary cultures. EDG-2 expression in glial cells of the ENS was confirmed immunocytochemically.
-
Desensitization of post-synaptic serotonin1A (5-HT1A) receptors may underlie the clinical improvement of neuropsychiatric disorders. In the hypothalamic paraventricular nucleus, Galphaz proteins mediate the 5-HT1A receptor-stimulated increases in hormone release. Regulator of G protein signaling-Z1 (RGSZ1) is a GTPase-activating protein selective for Galphaz proteins. ⋯ Interestingly, previous experiments indicate that only estradiol produces a decreased Emax of 5-HT1A receptor-stimulation of hormone release, whereas fluoxetine, cocaine and DOI produce a shift to the right (increased ED50). Thus, the desensitization of 5-HT1A receptors by estradiol might be attributable to increased levels of RGSZ1 protein. These findings may provide insight into the adaptation of 5-HT1A receptor signaling during pharmacotherapies of mood disorders in women and the well-established gender differences in the vulnerability to depression.
-
Although mu opioid receptors desensitize in various cell lines in vitro, the relationship of this change in signaling efficacy to the development of tolerance in vivo remains uncertain. It is clear that a system is needed in which functional mu opioid receptor expression is obtained in appropriate neurons so that desensitization can be measured, manipulated, and mutated receptors expressed in this environment. We have developed a recombinant system in which expression of a flag-tagged mu opioid receptor is returned to dorsal root ganglia neurons from mu opioid receptor knockout mice in vitro. ⋯ Both receptors desensitized equally over the first 6 h of DAMGO pre-incubation, but after 24 h the response of the endogenous receptor to DAMGO had desensitized further than the flag- tagged receptor (71+/-3 vs 29+/-7% respectively; P<0.002), indicating less desensitization in neurons expressing a higher density of receptor. Using flow cytometry to quantify the percentage of receptors remaining on the neuronal cell surface, the flag-tagged receptor internalized by 17+/-1% after 20 min and 55+/-2% after 24 h of DAMGO. These data indicate that this return of function model in neurons recapitulates many of the characteristics of endogenous mu opioid receptor function previously identified in non-neuronal cell lines.
-
Comparative Study
Evidence of neuronal excitatory amino acid carrier 1 expression in rat dorsal root ganglion neurons and their central terminals.
The expression and distribution of the neuronal glutamate transporter, excitatory amino acid carrier-1 (EAAC1), are demonstrated in the dorsal root ganglion neurons and their central terminals. Reverse transcriptase-polymerase chain reaction shows expression of EAAC1 mRNA in the dorsal root ganglion. Immunoblotting analysis further confirms existence of EAAC1 protein in this region. ⋯ Unilateral dorsal rhizotomy experiments further show that EAAC1 immunoreactivity is less intense in superficial dorsal horn on the side ipsilateral to the dorsal rhizotomy than on the contralateral side. The results indicate the presence of EAAC1 in the dorsal root ganglion neurons and their central terminals. Our findings suggest that EAAC1 might play an important role in transmission and modulation of nociceptive information via the regulation of pre-synaptically released glutamate.
-
Previous work showed that isolation rearing produces remarkable changes in the dendritic pattern and soma of the principal neurons in the dentate gyrus and hippocampal fields CA3 and CA1 of the guinea-pig. The aim of the present study was to obtain information about the effects of early postnatal isolation on neuron morphology in field CA2, the "resistant sector" of the hippocampal formation. Male and female guinea-pigs were assigned at 6-7 days of age to either a control (social) or an isolated environment where they remained for 80-90 days. ⋯ The dendritic atrophy in field CA2 of isolated males is in line with previous evidence that males react to isolation mainly with dendritic atrophy, though field CA2 neurons appear to be less damaged than those of the other hippocampal fields. This is in line with the resistance of this field to neurodegeneration. The absence of structural changes in field CA2 of isolated females confirms, once again, that males are more liable to be endangered by early isolation than females.