Neuroscience
-
Prostaglandin E2 (PGE2) produced in the medial preoptic region (MPO) in response to immune signals is generally accepted to play a major role in triggering the illness response, a complex of physiological and behavioral changes induced by infection or injury. Hyperalgesia is now thought to be an important component of the illness response, yet the specific mechanisms through which the MPO acts to facilitate nociception have not been established. However, the MPO does project to the rostral ventromedial medulla (RVM), a region with a well-documented role in pain modulation, both directly and indirectly via the periaqueductal gray. ⋯ In animals displaying behavioral hyperalgesia, the PGE2 microinjection activated on-cells, RVM neurons thought to facilitate nociception, and suppressed the firing of off-cells, RVM neurons believed to have an inhibitory effect on nociception. A large body of evidence has implicated prostaglandins in the MPO in generation of the illness response, especially fever. The present study indicates that the MPO also contributes to the hyperalgesic component of the illness response, most likely by recruiting the nociceptive modulating circuitry of the RVM.
-
Audiogenic seizures are a model of generalized tonic-clonic brainstem-generated seizures. Repeated induction of audiogenic seizures, in audiogenic kindling (AuK) protocols, generates limbic epileptogenic activity. The present work evaluated associations between permanence of AuK-induced limbic epileptogenicity and changes in cell number/gluzinergic terminal reorganization in limbic structures in Wistar audiogenic rats (WARs). ⋯ AmK and AuK-AmK were associated with broader cell loss than AuK. Data indicate that permanent AuK-induced limbic epileptogenicity is mainly associated to gluzinergic terminal reorganization in amygdala but not in the hippocampus and with no hippocampal cell loss. Few AmK-induced seizures are associated to broader and higher cell loss than a higher number of AuK-induced seizures.
-
We previously demonstrated that spinal protein kinase C (PKC) is involved in the development of a neuropathic pain-like state induced by sciatic nerve ligation, and the morphine-induced rewarding effect is attenuated by sciatic nerve ligation in rodents. Here we first investigated whether sciatic nerve injury could change the activity of a conventional PKC (cPKC) and an atypical PKC isoform PKCzeta in the mouse spinal cord. The second experiment was to investigate whether direct inhibition of spinal PKC by intrathecal (i.t.) administration of a specific PKC inhibitor, 2-[8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyrido[1,2-a]indol-3-yl]-3-(1-methyl-1H-indole-3-yl)maleimide (RO-32-0432), could affect the rewarding effect induced by morphine following sciatic nerve ligation in mice. ⋯ In the present study, we confirmed that the morphine-induced place preference was significantly suppressed by sciatic nerve ligation. It should be mentioned that i.t. pretreatment with RO-32-0432 significantly reversed the attenuation of morphine-induced rewarding effect following sciatic nerve ligation. These results suggest that activation of PKCs, including cPKC and PKCzeta, within the spinal cord is directly responsible for the attenuation of the morphine-induced rewarding effect under a neuropathic pain-like state following sciatic nerve ligation in mice.
-
Comparative Study
N-methyl-D-aspartate receptors in the amygdala are necessary for the acquisition and expression of conditioned defeat.
Here, we describe a biologically relevant model called conditioned defeat that is used to examine behavioral responses to social defeat in Syrian hamsters. In this model experimental animals that are normally aggressive experience social defeat and consequently display high levels of submissive/defensive behavior even in response to non-threatening conspecifics. N-methyl-D-aspartate (NMDA) receptors within the amygdala play an important role in conditioned fear; therefore, the purpose of this study was to examine whether NMDA receptors within the amygdala are necessary for the acquisition and expression of conditioned defeat. ⋯ Similarly, infusions of AP5 into the amygdala immediately before exposure to a non-aggressive intruder significantly attenuated the display of submissive/defensive behavior. These data demonstrate that NMDA receptors are necessary for both the acquisition and expression of conditioned defeat. We believe that conditioned defeat is a unique and valuable animal model with which to investigate the neurobiology of fear-related changes in social behavior.
-
Comparative Study
Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice.
The pharmacological profile of allopregnanolone, a neuroactive steroid that is a potent positive modulator of gamma-aminobutyric acidA (GABAA) receptors, is similar to that of ethanol. Recent findings indicate that acute injection of ethanol increased endogenous allopregnanolone to pharmacologically relevant concentrations in male rats. However, there are no comparable data in mice, nor has the effect of ethanol drinking on endogenous allopregnanolone levels been investigated. ⋯ The sex differences in the effect of ethanol administration on endogenous allopregnanolone levels suggest that the hormonal milieu may impact ethanol's effect on GABAergic neurosteroids. Importantly, these data are the first to report the effect of ethanol drinking on allopregnanolone levels and indicate that ethanol consumption and ethanol injection can produce physiologically relevant allopregnanolone levels in male mice. These results have important implications for studies investigating the potential role of endogenous allopregnanolone levels in modulating susceptibility to ethanol abuse.