Neuroscience
-
The expression of purinoceptor (P2)Y-subtypes on astrocytes in vivo under physiological conditions and after stab wound injury was investigated. Reverse transcriptase-polymerase chain reaction with specific primers for the receptor-subtypes P2Y1,2,4,6,12 in tissue extracts of the nucleus accumbens of untreated rats revealed the presence of all P2Y receptor mRNAs investigated. Double immunofluorescence visualized with laser scanning microscopy indicated the expression of the P2Y1,4 receptors on glial fibrillary acidic protein (GFAP)-labeled astrocytes under physiological conditions. ⋯ The non-selective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, the P2Y1 receptor antagonist N6-methyl-2'-deoxyadenosine 3',5'-bisphosphate and the P2Y1 receptor-antibody itself inhibited the agonist-induced effects. The data indicate the region-specific presence of P2Y receptors on astrocytes in vivo and their up-regulation after injury as well as the co-localization of P2X and P2Y receptor-subtypes on the same astrocyte. The dominant role of P2Y1 receptors in proliferation and the additional stimulation of non-P2Y1 receptors has been demonstrated in vivo suggesting the involvement of this receptor-type in the gliotic response under physiological and pathological conditions.
-
Comparative Study
Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system.
Hyperpolarisation-activated non-specific cation currents (Ih currents) are important for the regulation of cell excitability. These currents are carried by channels of the hyperpolarisation-activated nucleotide-gated (HCN) family, of which there are four known subtypes. In the enteric nervous system (ENS), the Ih current is prominent in AH neurons. ⋯ There was no correlation between the magnitude of the Ih and intensity of channel immunoreactivity. Our results indicate that HCN1, 2 and 4 genes and protein are expressed in the ENS. AH/Dogiel type II neurons, which have a prominent Ih, express HCN2 and 4 in guinea-pig and HCN1 and 2 in mouse and rat.
-
Comparative Study
Pre- and post-synaptic effects of manipulating surface charge with divalent cations at the photoreceptor synapse.
Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. ⋯ Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors.
-
We have investigated metaplasticity of the group I metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) and depotentiation (DP) induced by physiological synaptic stimulation in the medial perforant path of the dentate gyrus in vitro. Group I mGluR-LTD/DP was inhibited by prior preconditioning brief high frequency stimulation (HFS) if the preconditioning HFS induced long-term potentiation (LTP) or if the induction of LTP was inhibited by an NMDA receptor antagonist. ⋯ Activation of PKC was also necessary for the induction of mGluR-LTD itself, as the PKC inhibitor BIS prevented the induction of the mGluR-LTD. We suggest that the physiological stimulation of mGluRs by the preconditioning stimulation produces a PKC-dependent inactivation of subsequent group I mGluR functioning and thereby an inhibition of induction of group I mGluR-dependent LTD/DP induction.
-
Comparative Study
N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: a proton magnetic resonance spectroscopy study.
The left frontal cortex plays an important role in executive function and complex language processing inclusive of spoken language. The purpose of this work was to assess metabolite levels in the left and right prefrontal cortex and left anterior cingulum by proton magnetic resonance spectroscopy and relate results to verbal intelligence (Wechsler Adult Intelligence Scale revised) in a sample of college-educated healthy volunteers (dorsolateral prefrontal cortex [DLPFC]: n=52, 23 females, and left anterior cingulum: n=62, 22 females; age range: 20-75 years). In women only, N-acetylaspartate in the DLPFC and in the left anterior cingulate cortex was positively correlated with vocabulary scores. Our data support the hypothesis of existing gender differences regarding the involvement of the left frontal cortex in verbal processing as reflected in different correlations of specific metabolites with verbal scores.