Neuroscience
-
Comparative Study
Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain.
We have recently identified a third subtype of glutamate vesicular transporter (VGLUT) named VGLUT3. In the present study, we provide a detailed account of the regional and cellular distributions of VGLUT3 in the rat brain, using specific nucleotide probes and antisera. The distribution of VGLUT3 protein was compared with that of the other vesicular transporters (VGLUT1 and VGLUT2). ⋯ In these regions, VGLUT3 immunoreactivity may be present in terminals of long projecting neurons. This subclass of glutamatergic afferents differs from other "classical" excitatory terminals that express VGLUT1 or VGLUT2. The distribution of VGLUT3 in the rat brain suggests an unsuspected function of vesicular glutamate transport in subsets of interneurons and in neuromodulatory neurons.
-
Using an in vitro microsuperfusion procedure, the release of newly synthesized [(3)H]-acetylcholine (ACh), evoked by N-methyl-D-aspartate (NMDA) receptor stimulation, was investigated in striosome-enriched areas and matrix of the rat striatum. The role of micro-opioid receptors, activated by endogenously released enkephalin, on the NMDA-evoked release of ACh was studied using the selective micro-opioid receptor antagonist, beta-funaltrexamine. Experiments were performed 2 (morning) or 8 (afternoon) h after light onset, in either the presence or absence (alpha-methyl-p-tyrosine, an inhibitor of dopamine synthesis) of dopaminergic transmission. ⋯ The selective micro-opiate agonist, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (1 microM, coapplied with NMDA), was without effect on the NMDA-evoked release of ACh but abolished both dopamine-dependent (morning) and dopamine-independent (afternoon) responses of beta-funaltrexamine (10 nM and 1 microM). Therefore, in the limbic territory of the striatum enriched in striosomes, the micro-opioid-inhibitory regulation of ACh release follows diurnal rhythms. While dopamine is required for this regulation in the morning and the afternoon, an additional dopamine-independent process is present only in the afternoon.
-
We hypothesized that glutamate (Glu) released from the peripheral terminals of primary afferents contributes to the generation of mechanical hyperalgesia following peripheral nerve injury. Nerve injury was performed on rats with a lumbar 5 spinal nerve lesion (L5 SNL), which was preceded by L5 dorsal rhizotomy (L5 DR) to avoid the potential central effects induced by L5 SNL through the L5 dorsal root. Mechanical hyperalgesia, as evidenced by a reduction in paw withdrawal threshold (PWT), was short-lasting (<6 days) after L5 DR, but persistent (>42 days) after L5 SNL preceded by L5 DR. ⋯ However, this onset was not affected by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4,-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; 100 nmol). When the same injection was given after L5 SNL-induced mechanical hyperalgesia had been established, MK-801 reversed the PWT reduction for 30-75 min, whereas NBQX, DL-AP3, or APDC had no effect. These results suggest that the manipulation of the peripheral Glu receptors reduces neuropathic pain, by blocking NMDA and group-I mGlu receptors and by stimulating group-II mGlu receptor during the induction phase of neuropathic pain, but only by blocking the NMDA receptor during its maintenance phase.
-
Comparative Study
Synaptic properties and postsynaptic opioid effects in rat central amygdala neurons.
An important output of amygdaloid nuclei, the central nucleus of the amygdala (CeA) not only mediates negative emotional behaviors, but also participates in the stimulus-reward learning and expression of motivational aspects of many drugs of abuse, and links environmentally stressful conditions such as fear to endogenous pain-inhibiting mechanisms. The endogenous opioid system in the CeA is crucial for both reward behaviors and environmental stress-induced analgesia. In this study using whole-cell voltage-clamp recordings, we investigated synaptic inputs and the postsynaptic effects of opioid agonists in CeA neurons. ⋯ In contrast, the kappa-opioid receptor agonist hyperpolarized only type B neurons. These results illustrate three types of CeA neurons with distinctive membrane properties and differential responses to opioid agonists. They may represent functionally distinct CeA cell groups for the integration and execution of CeA outputs in the aforementioned CeA functions.
-
Previous studies have shown that mitogen-activated protein kinases, such as extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK), mediate signal transduction from cell surface receptors to the nucleus and phosphorylate anti-apoptotic proteins thereby regulating programmed cell death. The present study tests the hypotheses that hypoxia activates ERK and JNK in neuronal nuclei of newborn piglets and the hypoxia-induced activation of ERK and JNK is mediated by nitric oxide (NO). Activated ERK and JNK were assessed by determining phosphorylated ERK and JNK using immunoblotting in six normoxic (Nx) and 10 hypoxic (Hx) and five N-nitro-L-arginine (a NOS inhibitor, 40 mg/kg,) -pretreated hypoxic (N-nitro-L-arginine [NNLA]-Hx) 3-5 day old piglets. ⋯ Density of phosphorylated JNK protein was 172.8+/-42.8 ODxmm(2) in the normoxic group as compared with 364.6+/-60.1 ODxmm(2) in the Hx group (P<0.002) and 254.8+/-24.8 in the NNLA-Hx group (P<0.002 vs Hx). The data demonstrate increased phosphorylation of ERK and JNK during hypoxia indicating that hypoxia results in activation of ERK and JNK in neuronal nuclei of newborn piglets. The administration of NNLA, a NOS inhibitor, prevented the hypoxia-induced phosphorylation of ERK and JNK indicating that the hypoxia-induced activation of ERK and JNK in the cerebral cortical nuclei of newborn piglets is NO-mediated