Neuroscience
-
Comparative Study
The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats.
There are significant decrements in sleep with age. These include fragmentation of sleep, increased wake time, decrease in the length of sleep bouts, decrease in the amplitude of the diurnal rhythm of sleep, decrease in rapid eye movement sleep and a profound decrease in electroencephalogram Delta power (0.3-4 Hz). Old rats also have less sleep in response to 12 h-prolonged wakefulness (W) indicating a reduction in sleep drive with age. ⋯ In experiment 2, old rats kept awake for 6 h (first half of lights-on period) accumulated more AD compared with young rats. If old rats have more AD then why do they sleep less? To investigate whether changes in sensitivity of the AD receptor contribute to the decline in sleep, experiments 3 and 4 determined that for the same concentration of AD or the AD receptor 1 agonist, cyclohexyladenosine, old rats have less sleep compared with young rats. We conclude that even though old rats have more AD, a reduction in the sensitivity of the AD receptor to the ligand does not transduce the AD signal at the same strength as in young rats and may be a contributing factor to the decline in sleep drive in the elderly.
-
A growing body of evidence indicates that estrogens affect apoptotic processes in neuronal cells. However, their effects seem to depend on type of neuronal tissue, stage of development and apoptosis inducing factors. In the present study we compared effects of estrone (100 and 500 nM) on N-methyl-D-aspartic acid (NMDA) (1 mM)- and staurosporine (1 microM)-induced caspase-3-like activity and lactate dehydrogenase (LDH)-release in primary cultures of rat hippocampal and neocortical neurons. ⋯ In contrast to NMDA, staurosporine elevated caspase-3-like activity and LDH-release in a time-dependent manner in all used culture systems. Estrone inhibited pro-apoptotic effects of staurosporine in neocortical neurons, but only at later stage of development in vitro, which points to the protective role of estrogens during the brain tissue maturation. Since estrone triggered its effects via non-genomic mechanisms, it suggests that the other estradiol metabolites exhibiting low affinity to hormone receptors may be potent neuroprotective agents, which could retain the favorable and minimize the adverse side effects of estrogens.
-
Comparative Study
Up-regulation of gamma-aminobutyric acid transporter I mediates ethanol sensitivity in mice.
Ethanol is among the most widely abused drugs in the world. Chronic ethanol consumption leads to ethanol tolerance and addiction, and impairs learning and memory. Na+/Cl- dependent GABA transporters play an important role in controlling the concentration of GABA in the synaptic cleft, and thus they control the intensity and duration of synaptic transmission of GABA. ⋯ These results suggest that GAT1 plays an important role in sensitivity to ethanol, and might be a therapeutic target for alcoholism prevention and treatment. Acute and chronic ethanol administration resulted in the increase of GABA transporter function. Use of GAT1 selective inhibitors and GAT1 overexpressing mice thus demonstrate that GAT1 should be an important protein mediating sensitivity to ethanol in mice.
-
Comparative Study
Role of 5-HT1B receptors in entrainment disorder of Otsuka Long Evans Tokushima fatty (OLETF) rats.
The role of 5-HT1A and 5-HT1B receptors in entrainment function was studied in Otsuka Long Evans Tokushima fatty (OLETF) rats and control Long Evans Tokushima Otsuka (LETO) rats. Light-induced (100 lux, 30 min) Fos expression in the suprachiasmatic nucleus was studied. Light-induced Fos expression was significantly decreased in OLETF rats compared to that in LETO rats. ⋯ Light-induced phase shifts of locomotor activity in OLETF rats were significantly smaller than those in LETO rats. The phase shifts were significantly increased by isamoltan (3 mg/kg, i.p.) in OLETF rats. These results suggest that 5-HT1B receptors are involved in the reduced entrainment function of OLETF rats.
-
Comparative Study
Contribution of peripheral N-methyl-D-aspartate receptors to c-fos expression in the trigeminal spinal nucleus following acute masseteric inflammation.
In this study, we examined the contribution of N-methyl-D-aspartate (NMDA) receptors on c-fos expression in the trigeminal brainstem nuclei following acute muscle inflammation. Mustard oil (MO; 20%, 30 microL) injected into the masseter muscle induced extensive peripheral edema and Fos-like immunoreactivity (Fos-LI) in several trigeminal brainstem areas including the subnucleus caudalis of the trigeminal spinal nucleus (Vc), the ventral and dorsal regions of the Vc/subnucleus interpolaris transition zone, and the paratrigeminal nucleus. In order to assess the effect of antagonizing NMDA receptors on MO-induced Fos-LI, rats were pre-treated with two different doses of i.v. ⋯ Only at the caudal Vc, there was a dose-dependent reduction of MO induced Fos-LI. Pre-treatment with masseteric MK-801 also significantly reduced the Fos-LI in the caudal Vc, with the effect greater than that produced by the same dose of MK-801 given intravenously. These results suggest that peripheral NMDA receptors contribute to nociceptive processing from craniofacial muscles.