Neuroscience
-
Different lines of evidence indicate that ATP and nitric oxide (NO) play key roles in mediating neuronal responses after cell damage. Purinergic and nitrergic interactions have been proposed in non neural tissues physiological functions and, in different experimental models of brain injury, both purinergic and nitrergic activations have been reported. The present study was planned to ascertain possible relations of these two systems after brain damage. ⋯ Present data demonstrate that after cerebellar lesion nitrergic and purinergic systems are activated with similar time courses in precerebellar stations. Further, time differences in the relation between nNOS expression and cell survival suggest a multifarious role of NO in mediating cell reaction to axotomy. The tight cellular co-localization and temporal co-activation of purinergic and nitrergic markers indicate possible interactions between these two systems also in the CNS.
-
The pineal gland, through nocturnal melatonin, acts as a neuroendocrine transducer of daily and seasonal time. Melatonin synthesis is driven by rhythmic activation of the rate-limiting enzyme, arylalkylamine N-acetyltransferase (AA-NAT). In ungulates, AA-NAT mRNA is constitutively high throughout the 24-h cycle, and melatonin production is primarily controlled through effects on AA-NAT enzyme activity; this is in contrast to dominant transcriptional control in rodents. ⋯ This did not significantly affect the expression of ICER, AA-NAT or Cryptochrome1 in the pineal, whilst a slight suppressive effect on overall Per1 levels was observed. The attenuated response to photoperiod change appears to be specific to the ovine pineal, as the first long day induced rapid changes of Period1 and ICER expression in the hypothalamic suprachiasmatic nuclei and pituitary pars tuberalis, respectively. Overall, our data suggest a general reduction of circadian control of transcript abundance in the ovine pineal gland, consistent with a marked evolutionary divergence in the mechanism regulating melatonin production between terrestrial ruminants and fossorial rodents.
-
Comparative Study
Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro.
The hippocampus is often considered to play a major role in the pathophysiology of mesial temporal lobe epilepsy. However, emerging clinical and experimental evidence suggests that parahippocampal areas may contribute to a greater extent to limbic seizure initiation, and perhaps epileptogenesis. To date, little is known about the participation of entorhinal and perirhinal networks to epileptiform synchronization. ⋯ These procedures also shortened ictal discharge duration in the entorhinal cortices, but not in the perirhinal area. Similar results could be obtained by applying Mg(2+)-free medium (n=7). These findings indicate that parahippocampal networks provide independent epileptiform synchronization sufficient to sustain limbic seizures as well as that the perirhinal cortex plays a preferential role in in vitro ictogenesis.
-
Comparative Study
Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures.
In the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of endothelial cells lining brain microvessels and forming the blood-brain barrier. Many lipophilic drugs, including antiepileptic drugs, are potential substrates for Pgp. Overexpression of Pgp in endothelial cells of the blood-brain barrier has been determined in patients with drug resistant forms of epilepsy such as temporal lobe epilepsy and rodent models of temporal lobe epilepsy and suggested to lead to reduced penetration of antiepileptic drugs into the brain. ⋯ No neuronal Pgp staining was seen in control rats. The expression of Pgp in neurons after limbic seizures was substantiated by determining Pgp encoding genes (mdr1a, mdr1b) in neurons by real time quantitative RT-PCR. Increased Pgp expression in hippocampal neurons is likely to affect the action of drugs with intraneuronal targets and, in view of recent evidence from other cell types, could be associated with prevention of apoptosis which is involved in neuronal damage developing after seizures such as produced by pilocarpine.
-
The cholinergic neurons in the septohippocampal projection are implicated in hippocampal functions such as spatial learning and memory. The aim of this study was to examine how septohippocampal cholinergic transmission is modulated by muscarinic inputs and by the neuropeptide galanin, co-localized with acetylcholine (ACh) in septohippocampal cholinergic neurons, and how spatial learning assessed by the Morris water maze test is affected. Muscarinic inputs to the septal area are assumed to be excitatory, whereas galanin is hypothesized to inhibit septohippocampal cholinergic function. ⋯ Galanin receptor stimulation combined with muscarinic blockade in the septal area resulted in an excessive increase of hippocampal ACh release combined with an impairment of spatial learning. This finding suggests that the level of muscarinic activity within the septal area may determine the effects of galanin on hippocampal cognitive functions. In summary, a limited range of cholinergic muscarinic transmission may contribute to optimal hippocampal function, a finding that has important implications for therapeutic approaches in the treatment of disorders of memory function.