Neuroscience
-
Comparative Study
M2 muscarinic receptors in pontine reticular formation of C57BL/6J mouse contribute to rapid eye movement sleep generation.
Microinjecting the acetylcholinesterase inhibitor neostigmine into the pontine reticular formation of C57BL/6J (B6) mouse causes a rapid eye movement (REM) sleep-like state. This finding is consistent with similar studies in cat and both sets of data indicate that the REM sleep-like state is caused by increasing levels of endogenous acetylcholine (ACh). Muscarinic cholinergic receptors have been localized to the pontine reticular formation of B6 mouse but no previous studies have examined which of the five muscarinic receptor subtypes participate in cholinergic REM sleep enhancement. ⋯ Pertussis toxin and methoctramine significantly decreased the neostigmine-induced REM sleep-like state. In contrast, pretreatment with pirenzepine did not significantly decrease the REM sleep-like state caused by neostigmine. These results support the interpretation that M2 receptors in the pontine reticular formation of B6 mouse contribute to the generation of REM sleep.
-
This study investigated the relationship between the orexins and patterns of activity in the diurnal Nile grass rat, Arvicanthis niloticus. Some individuals of this species switch to a more nocturnal pattern when given access to a running wheel, while others continue to be most active during the day. In both day- and night-active grass rats, the percentages of orexin A (OXA) and orexin B (OXB) cells expressing Fos were highest when animals were actively running in wheels. ⋯ This study demonstrates that individual differences in the patterns of activation of OXA and OXB cell populations are related to differences in the temporal pattern of wheel running. We also present evidence that orexin cells have projections to the intergeniculate leaflet that appear to make contact with neuropeptide-Y cells. We discuss the possibility that these fibers may be involved in relaying feedback regarding the activity state of the animal to the circadian system through these projections.
-
Comparative Study
Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.
Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. ⋯ In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.
-
Comparative Study
Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain.
Several experimental models of peripheral neuropathy show that a significant upregulation of spinal dynorphin A and its precursor peptide, prodynorphin, is a common consequence of nerve injury. A genetically modified mouse strain lacking prodynorphin does not exhibit sustained neuropathic pain after nerve injury, supporting a pronociceptive role of elevated levels of spinal dynorphin. A null mutation of the gamma isoform of protein kinase C (PKCgamma KO [knockout]), as well as an inbred mouse strain, 129S6, also does not manifest behavioral signs of neuropathic pain following peripheral nerve injury. ⋯ However, the PKCgamma KO mice and the 129S6 mice (which express PKCgamma) did not show abnormal pain after SNL; neither strain showed elevated levels of spinal dynorphin. The multiple phenotypic deficits in PKCgamma KO mice confound the interpretation of the proposed role of PKCgamma-expressing spinal neurons in neuropathic pain states. Additionally, the data show that the regulation of spinal dynorphin expression is a common critical feature of expression of neuropathic pain.
-
We hypothesized that glutamate (Glu) released from the peripheral terminals of primary afferents contributes to the generation of mechanical hyperalgesia following peripheral nerve injury. Nerve injury was performed on rats with a lumbar 5 spinal nerve lesion (L5 SNL), which was preceded by L5 dorsal rhizotomy (L5 DR) to avoid the potential central effects induced by L5 SNL through the L5 dorsal root. Mechanical hyperalgesia, as evidenced by a reduction in paw withdrawal threshold (PWT), was short-lasting (<6 days) after L5 DR, but persistent (>42 days) after L5 SNL preceded by L5 DR. ⋯ However, this onset was not affected by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4,-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; 100 nmol). When the same injection was given after L5 SNL-induced mechanical hyperalgesia had been established, MK-801 reversed the PWT reduction for 30-75 min, whereas NBQX, DL-AP3, or APDC had no effect. These results suggest that the manipulation of the peripheral Glu receptors reduces neuropathic pain, by blocking NMDA and group-I mGlu receptors and by stimulating group-II mGlu receptor during the induction phase of neuropathic pain, but only by blocking the NMDA receptor during its maintenance phase.