Neuroscience
-
Excitotoxic oligodendroglial death is one of the mechanisms which has been proposed to underlie demyelinating diseases of the CNS. We describe here functional consequences of excitotoxic lesions to the rabbit optic nerve by studying the visual evoked potentials (VEPs) measured in the visual cortex. Nerves were slowly infused with the excitotoxin kainate a subcutaneously implanted osmotic pump which delivered the toxin through a cannula onto the optic nerve. ⋯ These observations were confirmed and extended by immunohistochemical analyses using markers to neurofilaments, myelin basic protein and the oligodendrocyte marker APC. The results of the present paper indicate that the consequences of excitotoxicity in the optic nerve share functional and morphological alterations which are found in demyelinating disorders. In addition, this experimental paradigm may be useful to evaluate the functional recovery of demyelinated optic nerves following various repair strategies.
-
Comparative Study
Early increase of apoptosis-linked gene-2 interacting protein X in areas of kainate-induced neurodegeneration.
Apoptosis-linked gene-2 interacting protein X (Alix) is thought to be involved in both cell death and vesicular trafficking. We examined Alix expression 2 h, 6 h and 24 h after triggering seizure-dependent neuronal death by i.p. kainic acid injection. In the hippocampus, intense, transient immunolabelling was observed in the strata lucidum, oriens and radiatum, areas of high synaptic activity. ⋯ The increase persisted 24 h after kainate-injection in CA3 and the piriform cortex which are areas with massive swelling and numerous pyknotic neurons. This suggests that Alix may play an early role in the mechanisms leading to cell death. Taken together, our results suggest that Alix may be a molecular link between synaptic functioning and neuronal death.
-
Comparative Study
Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures.
In the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of endothelial cells lining brain microvessels and forming the blood-brain barrier. Many lipophilic drugs, including antiepileptic drugs, are potential substrates for Pgp. Overexpression of Pgp in endothelial cells of the blood-brain barrier has been determined in patients with drug resistant forms of epilepsy such as temporal lobe epilepsy and rodent models of temporal lobe epilepsy and suggested to lead to reduced penetration of antiepileptic drugs into the brain. ⋯ No neuronal Pgp staining was seen in control rats. The expression of Pgp in neurons after limbic seizures was substantiated by determining Pgp encoding genes (mdr1a, mdr1b) in neurons by real time quantitative RT-PCR. Increased Pgp expression in hippocampal neurons is likely to affect the action of drugs with intraneuronal targets and, in view of recent evidence from other cell types, could be associated with prevention of apoptosis which is involved in neuronal damage developing after seizures such as produced by pilocarpine.
-
Comparative Study
Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain.
Several experimental models of peripheral neuropathy show that a significant upregulation of spinal dynorphin A and its precursor peptide, prodynorphin, is a common consequence of nerve injury. A genetically modified mouse strain lacking prodynorphin does not exhibit sustained neuropathic pain after nerve injury, supporting a pronociceptive role of elevated levels of spinal dynorphin. A null mutation of the gamma isoform of protein kinase C (PKCgamma KO [knockout]), as well as an inbred mouse strain, 129S6, also does not manifest behavioral signs of neuropathic pain following peripheral nerve injury. ⋯ However, the PKCgamma KO mice and the 129S6 mice (which express PKCgamma) did not show abnormal pain after SNL; neither strain showed elevated levels of spinal dynorphin. The multiple phenotypic deficits in PKCgamma KO mice confound the interpretation of the proposed role of PKCgamma-expressing spinal neurons in neuropathic pain states. Additionally, the data show that the regulation of spinal dynorphin expression is a common critical feature of expression of neuropathic pain.
-
Comparative Study
Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion.
The goal of this study was to determine if relatively complex motor training on Rota-rod involving balance and coordination plays an essential role in improving motor function in ischemic rats, as compared with simple locomotor exercise on treadmill. Adult male Sprague-Dawley rats with (n=40) or without (n=40) ischemia were trained under each of three conditions: (1) motor balance and coordination training on Rota-rod; (2) simple exercise on treadmill; and (3) non-trained controls. Motor function was evaluated by a series of tests (foot fault placing, parallel bar crossing, rope and ladder climbing) before and at 14 or 28 days after training procedures in both ischemic and normal animals. ⋯ E.), treadmill (45+/-5%) or non-exercised control (45+/-3%). In addition, no obvious difference could be detected in the location of the damage which included the dorso-lateral portion of the neostriatum and the frontoparietal cortex, the main regions supplied by the middle cerebral artery. The data suggest that complex motor training rather than simple exercise effectively improves functional outcome.