Neuroscience
-
There is a growing recognition of choroid plexus functioning as a source of neuropeptides, cytokines and growth factors in cerebrospinal fluid (CSF) with diffusional access into brain parenchyma. In this study, choroid plexus and other components of the CSF circulatory system were investigated by Western blotting, reverse transcriptase polymerase chain reaction and immunohistochemistry for production of interleukin-6-related cytokines characterized by neuroactivity [cardiotrophin-1 (CT-1), ciliary neurotrophic factor, leukemia inhibitory factor, oncostatin M] and signaling through the gp130/leukemia inhibitory factor receptor-beta receptor heterodimer. Western blot analysis showed that CT-1 was the only cytokine family member detectable in adult rat choroid plexus, as in leptomeninges. ⋯ Our study clearly demonstrates production of CT-1 in the postnatal and adult CNS, specifically by cell types comprising the blood-CSF barrier, and its accumulation in ventricular ependyma. This finding has broad implications for CT-1 functioning apart from other leukemia inhibitory factor receptor ligands as a CSF-borne signal of brain homeostasis, one possibly involving regulation of the barrier itself, the ependyma or target cells in the surrounding parenchyma, including the subventricular zone. A rationale for studies examining CT-1-deficient mice in these respects is provided by the data.
-
Cocaine- and amphetamine-regulated transcript (CART) and CART-derived peptides are widely expressed in the hypothalamus. CART is involved in food intake control and is regulated by circulating leptin, a hormone implicated in a variety of endocrine functions. Lack of leptin (ob/ob mice) is associated with obesity, hypogonadism and infertility. ⋯ Most projections targeted brain areas related to reproductive behavior and few fibers were closely associated with GnRH neurons. Our findings indicate that ventral premammillary nucleus CART neurons intermingle with brain circuitry involved in reproduction. Therefore, these neurons are well positioned to mediate leptin effect on reproductive control.
-
Different forms of electrical paroxysms in experimental animals mimic the patterns of absence seizures associated with spike-wave complexes at approximately 3 Hz and of Lennox-Gastaut seizures with spike-wave or polyspike-wave complexes at approximately 1.5-2.5 Hz, intermingled with fast runs at 10-20 Hz. Both these types of electrical seizures are preferentially generated during slow-wave sleep. Here, we challenge the hypothesis of a subcortical pacemaker that would account for suddenly generalized spike-wave seizures as well as the idea of an exclusive role of synaptic excitation in the generation of paroxysmal depolarizing components, and we focus on three points, based on multiple intracellular and field potential recordings in vivo that are corroborated by some clinical studies: (a) the role of neocortical bursting neurons, especially fast-rhythmic-bursting neurons, and of very fast oscillations (ripples, 80-200 Hz) in seizure initiation; (b) the cortical origin of both these types of electrical paroxysms, the synaptic propagation of seizures from one to other, local and distant, cortical sites, finally reaching the thalamus, where the synchronous cortical firing excites thalamic reticular inhibitory neurons and thus leads to steady hyperpolarization and phasic inhibitory postsynaptic potentials in a majority of thalamocortical neurons, which might explain the obliteration of signals from the external world and the unconsciousness during absence seizures; and (c) the cessation of seizures, whose cellular mechanisms have only begun to be investigated and remain an open avenue for research.
-
For many years, research focus on metallothioneins, small zinc binding proteins found predominantly within astrocytes in the brain, has centred on their ability to indirectly protect neurons from oxygen free radicals and heavy metal-induced neurotoxicity. However, in recent years it has been demonstrated that these proteins have previously unsuspected roles within the cellular response to brain injury. The aim of this commentary is to provide an overview of the exciting recent experimental evidence from several laboratories including our own suggesting a possible extracellular role for these proteins, and to present a hypothetical model explaining the newly identified function of extracellular metallothioneins in CNS injury and repair.
-
Aquaporin-4 (AQP4) is the major water channel in the CNS. Its expression at fluid-tissue barriers (blood-brain and brain-cerebrospinal fluid barriers) throughout the brain and spinal cord suggests a role in water transport under normal and pathological conditions. Phenotype studies of transgenic mice lacking AQP4 have provided evidence for a role of AQP4 in cerebral water balance and neural signal transduction. ⋯ In contrast, brain swelling and clinical outcome are worse in AQP4-null mice in models of vasogenic (fluid leak) edema caused by freeze-injury and brain tumor, probably due to impaired AQP4-dependent brain water clearance. AQP4-null mice also have markedly reduced acoustic brainstem response potentials and significantly increased seizure threshold in response to chemical convulsants, implicating AQP4 in modulation of neural signal transduction. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the CNS associated with altered brain water balance.