Neuroscience
-
Apoptosis was induced in cultured cerebellar granule cells by lowering extracellular K+ concentrations (usually from 25 to 10 mM). The apoptotic phenotype was preceded by an early and transient increase in the intracellular levels of the disialoganglioside, GD3, which behaves as a putative pro-apoptotic factor. We examined whether activation of Fas receptor mediates the increase in GD3 formation in granule cells committed to die. ⋯ Similar reductions were observed in cultures prepared from gld or lpr mice, which harbor loss-of-function mutations of Fas-L and Fas receptor, respectively. In addition, exogenous application of soluble Fas-L further enhanced both the increase in GD3 formation and cell death in cultured granule cells switched from 25 into 10 mM K+. We conclude that activation of Fas receptor is entirely responsible for the increase in GD3 levels and contributes to the development of apoptosis by trophic deprivation in cultured cerebellar granule cells.
-
Long-term GABA(A) receptor alterations occur in hippocampal dentate granule neurons of rats that develop epilepsy after status epilepticus in adulthood. Hippocampal GABA(A) receptor expression undergoes marked reorganization during the postnatal period, however, and the effects of neonatal status epilepticus on subsequent GABA(A) receptor development are unknown. ⋯ Further, unlike adult rats, postnatal day 10 rats subjected to status epilepticus do not become epileptic. These findings suggest age-dependent differences in the effects of status epilepticus on hippocampal GABA(A) receptors that could contribute to the selective resistance of the immature brain to epileptogenesis.
-
Comparative Study
Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats.
Central administration of angiotensin IV (Ang IV) or its analogues enhance performance of rats in passive avoidance and spatial memory paradigms. The purpose of this study was to examine the effect of a single bolus injection of two distinct AT4 ligands, Nle1-Ang IV or LVV-haemorphin-7, on spatial learning in the Barnes circular maze. Mean number of days for rats treated with either Nle1-Ang IV or LVV-haemorphin-7 to achieve learner criterion is significantly reduced compared with controls (P < 0.001 and P < 0.05 respectively). ⋯ As early as the first day of testing, the rats treated with the lower dose of Nle1-Ang IV or LVV-haemorphin-7 made fewer errors (P < 0.01 and P < 0.05 respectively) and travelled shorter distances (P < 0.05 for both groups) than the control animals. The enhanced spatial learning induced by Nle1-Ang IV (100 pmol) was attenuated by the co-administration of the AT4 receptor antagonist, divalinal-Ang IV (10 nmol). Thus, administration of AT4 ligands results in an immediate potentiation of learning, which may be associated with facilitation of synaptic transmission and/or enhancement of acetylcholine release.
-
Comparative Study
Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex.
We compared the effects of three different doses of allopregnanolone (4, 8 or 16 mg/kg), a metabolite of progesterone, to progesterone (16 mg/kg) in adult rats with controlled cortical impact to the pre-frontal cortex. Injections were given 1 h, 6 h and every day for 5 consecutive days after the injury. ⋯ On that same day the injured rats treated with progesterone showed more weight gain compared with the injured rats treated with the vehicle. These results can be taken to show that progesterone and allopregnanolone have similar neuroprotective effects after traumatic brain injury, but allopregnanolone appears to be more potent than progesterone in facilitating CNS repair.
-
Comparative Study
The hypothalamic-pituitary-adrenal and glucose responses to daily repeated immobilisation stress in rats: individual differences.
It is accepted that there are important individual differences in the vulnerability to stress-induced pathologies, most of them associated to the hypothalamic-pituitary and sympatho-medullo-adrenal axes, the two prototypical stress-responsive systems. However, there are few studies specifically aimed at characterising individual differences in the physiological response to daily repeated stress in rats. In the present work, male rats were submitted to repeated immobilisation (IMO) stress (1 h daily for 13 days) and several samples were taken at specific days and time points. ⋯ When the animals were classified in three groups on the basis of their plasma ACTH levels immediately after the first immobilisation, individual differences in the ACTH response progressively disappeared on successive exposures to the stressor, whereas those in corticosterone and glucose were more sustained. The present results suggest that there are individual differences in the physiological response to stress that tend to be reduced rather than accentuated by repeated exposure to the stressor. Nevertheless, this buffering effect of repeated stress was dependent on the particular variable studied.