Neuroscience
-
A selective GABA(B) receptor agonist, baclofen, is known to suppress neuropathic pain. In the present study, we investigated the effect of baclofen on the excitability of trigeminal root ganglion (TRG) neurons by using the whole cell and perforated patch-clamp recording techniques. Under voltage-clamp (V(h)=-60 mV), voltage-dependent K(+) currents were recorded in the small diameter TRG neurons (<30 microm) and isolated by blocking Na(+) and Ca(2+) currents with appropriate ion replacement. ⋯ Application of baclofen reduced action potential duration evoked by a depolarization current pulse. These results indicated that activation of GABA(B) receptors inhibits the excitability of rat small diameter TRG neurons and this inhibitory action is mediated by potentiation of voltage-dependent K(+) currents. We therefore concluded that modification of nociceptive transmission in the trigeminal system by activation of GABA(B) receptors occurs at the level of small TRG neuron cell bodies and/or their primary afferent terminals, which are potential targets of analgesia by baclofen.
-
Glycinergic membrane responses have been described in cortical plate neurons (CPn) and Cajal-Retzius cells (CRc) during early neocortical development. In order to elucidate the functional properties and molecular identity of glycine receptors in these two neuronal cell types, we performed whole-cell patch-clamp recordings and subsequent single-cell multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analyses on visually identified neurons in tangential and coronal slices as well as in situ hybridizations of coronal slices from neonatal rat cerebral cortex (postnatal days 0-4). In both CPn and CRc the glycinergic agonists glycine, beta-alanine and taurine induced inward currents with larger current densities in CRc. ⋯ In situ hybridization histochemistry showed the expression of mRNAs for alpha(2) and beta subunits within the cortical plate and in large neurons of the marginal zone, while there were no signals for alpha(1) and alpha(3) subunits. In summary, these results suggest that CPn and CRc express glycine receptors with similar functional and pharmacological properties. The correlation of pharmacological properties and mRNA expression suggests that the glycine receptors in both cell types may consist of alpha(2)/beta heteromeric receptors.
-
Comparative Study
Differential co-localisation of the P2X7 receptor subunit with vesicular glutamate transporters VGLUT1 and VGLUT2 in rat CNS.
Presynaptic P2X(7) receptors are thought to play a role in the modulation of transmitter release and have been localised to terminals with the location and morphology typical of excitatory boutons. To test the hypothesis that this receptor is preferentially associated with excitatory terminals we combined immunohistochemistry for the P2X(7) receptor subunit (P2X(7)R) with that for two vesicular glutamate transporters (VGLUT1 and VGLUT2) in the rat CNS. This confirmed that P2X(7)R immunoreactivity (IR) is present in glutamatergic terminals; however, whether it was co-localised with VGLUT1-IR or VGLUT2-IR depended on the CNS region examined. ⋯ In other forebrain areas, P2X(7)R-IR co-localised with VGLUT1-IR throughout the amygdala, caudate putamen, striatum, reticular thalamic nucleus and cortex and with VGLUT2-IR in the dorsal lateral geniculate nucleus, amygdala and hypothalamus. Dual labelling studies performed using markers for cholinergic, monoaminergic, GABAergic and glycinergic terminals indicated that in certain brainstem and spinal cord nuclei the P2X(7)R is also expressed by subpopulations of cholinergic and GABAergic/glycinergic terminals. These data support our previous hypothesis that the P2X(7)R may play a role in modulating glutamate release in functionally different systems throughout the CNS but further suggest a role in modulating release of inhibitory transmitters in some regions.
-
The median raphe nucleus is involved in controlling and maintaining hippocampal activity through its projection to inhibitory neurons in medial septum and hippocampus. It has been shown that anterogradely axonal-traced fibers originating in the median raphe nucleus project onto calbindin-containing neurons in hippocampus and parvalbumin-containing neurons in medial septum. Parallel immunohistochemistry studies showing serotonin fibers contacting calbindin- and parvalbumin-positive neurons have led to the assumption that raphe fibers projecting on these types of neurons are mainly serotonergic. ⋯ By use of triple immunofluorescence-labeling we analyzed the serotonergic content of the biotin dextran amine-labeled fibers contacting parvalbumin- and calbindin-positive neurons. Surprisingly, we found a significant non-serotonergic projection from both dorsal and median raphe nuclei onto calbindin- and parvalbumin-containing interneurons in septum and hippocampus, with a preference in hippocampus for projecting onto calbindin-positive neurons. These results indicate that the raphe nuclei may exert their control on hippocampal and septal activity not only through a serotonergic projection, but also through a significant non-serotonergic pathway.
-
We investigated the CNS delivery of insulin-like growth factor-I (IGF-I), a 7.65 kDa protein neurotrophic factor, following intranasal administration and the possible pathways and mechanisms underlying transport from the nasal passages to the CNS. Anesthetized adult male Sprague-Dawley rats were given [125I]-IGF-I intranasally or intravenously and then killed by perfusion-fixation within 30 min. Other animals were killed following cisternal puncture and withdrawal of cerebrospinal fluid (CSF) or intranasal administration of unlabeled IGF-I or vehicle. ⋯ Intravenous [125I]-IGF-I resulted in blood and peripheral tissue exposure similar to that seen following intranasal administration but CNS concentrations were significantly lower. Finally, delivery of IGF-I into the CNS activated IGF-I signaling pathways, confirming some portion of the IGF-I that reached CNS target sites was functionally intact. The results suggest intranasally delivered IGF-I can bypass the blood-brain barrier via olfactory- and trigeminal-associated extracellular pathways to rapidly elicit biological effects at multiple sites within the brain and spinal cord.