Neuroscience
-
Desensitization of post-synaptic serotonin1A (5-HT1A) receptors may underlie the clinical improvement of neuropsychiatric disorders. In the hypothalamic paraventricular nucleus, Galphaz proteins mediate the 5-HT1A receptor-stimulated increases in hormone release. Regulator of G protein signaling-Z1 (RGSZ1) is a GTPase-activating protein selective for Galphaz proteins. ⋯ Interestingly, previous experiments indicate that only estradiol produces a decreased Emax of 5-HT1A receptor-stimulation of hormone release, whereas fluoxetine, cocaine and DOI produce a shift to the right (increased ED50). Thus, the desensitization of 5-HT1A receptors by estradiol might be attributable to increased levels of RGSZ1 protein. These findings may provide insight into the adaptation of 5-HT1A receptor signaling during pharmacotherapies of mood disorders in women and the well-established gender differences in the vulnerability to depression.
-
This experiment tested the effect of cortical spreading depression on the sympathetic and thermogenic effects induced by orexin A. The firing rates of the sympathetic nerves to interscapular brown adipose tissue (IBAT), along with IBAT and colonic temperatures and heart rate were monitored in urethane-anesthetized male Sprague-Dawley rats before and 5 h after an injection of orexin A (1.5 nmol) into the lateral cerebral ventricle. The same variables were monitored in rats with cortical spreading depression, induced by an application of cotton pellets soaked with 2 M KCl to the frontal cortex. ⋯ The increases in firing rate, IBAT and colonic temperatures are blocked by cortical spreading depression, while the increase in heart rate is not affected by cortical spreading depression. These findings suggest that the cerebral cortex is involved in the control of the orexin A-induced hyperthermia. Furthermore, we suggested the name "hyperthermine A," as additional denomination of "orexin A."
-
Spinal intrathecal administration of nicotine inhibits bradykinin-induced plasma extravasation, a component of the inflammatory response, in the knee joint of the rat in a dose-related fashion. Nociceptors contain nicotinic receptors and activation of a nociceptor at its peripheral terminal, by capsaicin, also produces inhibition of inflammation. ⋯ Conversely, intrathecal administration of an alpha-adrenoceptor antagonist, phentolamine or an opioid receptor antagonist, naloxone, to block descending antinociceptive controls, which provide inhibitory input to primary afferent nociceptors, enhanced the action of both nicotine and capsaicin. These findings support the hypothesis that the central terminal of the primary afferent nociceptor is a CNS target at which nicotine acts to inhibit inflammation.
-
Bidirectional modifications in synaptic efficacy are central components in recent models of cortical learning and memory, and we previously demonstrated both long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD) in the neocortex of the unanaesthetized adult rat. Here, we have examined the effects of N-methyl-D-aspartate receptor (NMDAR) blockade on the induction of LTD, LTP, and depotentiation of field potentials evoked in sensorimotor cortex by stimulation of the white matter in the adult, freely moving rat. High frequency (300 Hz) stimulation (HFS) was used to induce LTP and prolonged, low-frequency (1 Hz) stimulation was used to induce either depotentiation or LTD. ⋯ Under NMDAR blockade, HFS failed to induce LTP and instead produced a depression effect similar to LTD. Following washout of the drug, HFS induced a normal LTP effect. Unlike LTP, LTD and depotentiation were found to be NMDAR-independent in the neocortex of the freely moving rat.
-
Comparative Study
Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint.
We had previously demonstrated that continual-hypoxia stimulated corticotropin-releasing factor (CRF)mRNA in hypothalamus, and release of CRF, as well as enhancing plasma adrenocorticotropic-hormone and corticosterone of rats. The present study demonstrates using in situ autoradiography that CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2) mRNA in the rat anterior pituitary is changed by intermittent hypoxia, cold, restraint, alone and in combination. Rats were exposed to intermittent hypoxia for 4 h/day during various periods in a hypobaric chamber. ⋯ These results show that the acute response to intermittent hypoxia is a decrease in the CRF receptor mRNA whereas longer exposure to the three environmental stressors hypoxia, cold and restraint is needed to provoke an increase. This may have important consequences for adaptation to high altitude. The significant differences between the expression of CRFR1 mRNA and CRFR2 mRNA in response to the different stimuli might suggest that the two receptors in the pituitary play different roles in behavior.