Neuroscience
-
Comparative Study
Potential pathways for intercellular communication within the calbindin subnucleus of the hamster suprachiasmatic nucleus.
In mammals, the suprachiasmatic nucleus (SCN) is the master circadian pacemaker. Within the caudal hamster SCN, a cluster of neurons containing the calcium binding protein, calbindin-D28K (CB), has been implicated in circadian locomotion. However, calbindin-immunoreactive (CB+) neurons in the calbindin subnucleus (CBsn) do not display a circadian rhythm in spontaneous firing [Eur J Neurosci 16 (2002) 2469]. ⋯ Lastly, we show that CB+ neurons are coupled to CB+ and CB- neurons by gap junctions. The current study provides a structural framework for synaptic communication, electrical coupling, and signaling via a growth factor within the CBsn of the hamster SCN. Our results reveal connections that have the potential for integrating cellular communication within a subregion of the SCN that is critically involved in circadian locomotion.
-
Previous studies have established the usefulness of endothelin-1 (ET-1) for the production of focal cerebral ischemia. The present study assessed the behavioral effects of focal ET-1-induced lesions of the sensorimotor cortex (SMC) in adult rats as well as cellular and structural changes in the contralateral homotopic motor cortex at early (2 days) and later (14 days) post-lesion time points. ET-1 lesions resulted in somatosensory and postural-motor impairments in the contralateral (to the lesion) forelimb as assessed on a battery of sensitive measures of sensorimotor function. ⋯ In comparison to sham-operated rats, in layer V of the motor cortex opposite the lesions, there were time- and laminar-dependent increases in the surface density of dendritic processes immunoreactive for microtubule-associated protein 2, in the optical density of N-methyl-D-asparate receptor (NMDA) subunit 1 immunoreactivity, and in the numerical density of cells immunolabeled for Fos, the protein product of the immediate early gene c-fos. These findings corroborate and extend previous findings of the effects of electrolytic lesions of the SMC. It is likely that compensatory forelimb behavioral changes and transcallosal degeneration play important roles in these changes in the cortex opposite the lesion, similar to previously reported effects of electrolytic SMC lesions.
-
Different lines of evidence indicate that ATP and nitric oxide (NO) play key roles in mediating neuronal responses after cell damage. Purinergic and nitrergic interactions have been proposed in non neural tissues physiological functions and, in different experimental models of brain injury, both purinergic and nitrergic activations have been reported. The present study was planned to ascertain possible relations of these two systems after brain damage. ⋯ Present data demonstrate that after cerebellar lesion nitrergic and purinergic systems are activated with similar time courses in precerebellar stations. Further, time differences in the relation between nNOS expression and cell survival suggest a multifarious role of NO in mediating cell reaction to axotomy. The tight cellular co-localization and temporal co-activation of purinergic and nitrergic markers indicate possible interactions between these two systems also in the CNS.
-
Following nerve injury in neonatal rats, a large proportion of motoneurons die, possibly as a consequence of an increase in vulnerability to the excitotoxic effects of glutamate. Calcium-dependent glutamate excitotoxicity is thought to play a significant role not only in injury-induced motoneuron death, but also in motoneuron degeneration in diseases such as amyotrophic lateral sclerosis (ALS). Motoneurons are particularly vulnerable to calcium influx following glutamate receptor activation, as they lack a number of calcium binding proteins, such as calbindin-D(28k) and parvalbumin. ⋯ M.; n=4) in parvalbumin over-expressing mice. Surprisingly, this dramatic increase in motoneuron survival was not reflected in a significant improvement in muscle function, since 8 weeks after injury there was no improvement in either maximal twitch and tetanic force, or muscle weights. Thus, inducing spinal motoneurons to express parvalbumin protects a large proportion of motoneurons from injury-induced cell death, but this is not sufficient to restore muscle function.
-
Comparative Study
Up-regulation of gamma-aminobutyric acid transporter I mediates ethanol sensitivity in mice.
Ethanol is among the most widely abused drugs in the world. Chronic ethanol consumption leads to ethanol tolerance and addiction, and impairs learning and memory. Na+/Cl- dependent GABA transporters play an important role in controlling the concentration of GABA in the synaptic cleft, and thus they control the intensity and duration of synaptic transmission of GABA. ⋯ These results suggest that GAT1 plays an important role in sensitivity to ethanol, and might be a therapeutic target for alcoholism prevention and treatment. Acute and chronic ethanol administration resulted in the increase of GABA transporter function. Use of GAT1 selective inhibitors and GAT1 overexpressing mice thus demonstrate that GAT1 should be an important protein mediating sensitivity to ethanol in mice.