Neuroscience
-
We hypothesized that glutamate (Glu) released from the peripheral terminals of primary afferents contributes to the generation of mechanical hyperalgesia following peripheral nerve injury. Nerve injury was performed on rats with a lumbar 5 spinal nerve lesion (L5 SNL), which was preceded by L5 dorsal rhizotomy (L5 DR) to avoid the potential central effects induced by L5 SNL through the L5 dorsal root. Mechanical hyperalgesia, as evidenced by a reduction in paw withdrawal threshold (PWT), was short-lasting (<6 days) after L5 DR, but persistent (>42 days) after L5 SNL preceded by L5 DR. ⋯ However, this onset was not affected by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4,-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; 100 nmol). When the same injection was given after L5 SNL-induced mechanical hyperalgesia had been established, MK-801 reversed the PWT reduction for 30-75 min, whereas NBQX, DL-AP3, or APDC had no effect. These results suggest that the manipulation of the peripheral Glu receptors reduces neuropathic pain, by blocking NMDA and group-I mGlu receptors and by stimulating group-II mGlu receptor during the induction phase of neuropathic pain, but only by blocking the NMDA receptor during its maintenance phase.
-
Comparative Study
Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain.
The gene encoding methyl-CpG binding protein 2 (MeCP2) is mutated in the large majority of girls that have Rett Syndrome (RTT), an X-linked neurodevelopmental disorder. To better understand the developmental role of MeCP2, we studied the ontogeny of MeCP2 expression in rat brain using MeCP2 immunostaining and Western blots. MeCP2 positive neurons were present throughout the brain at all ages examined, although expression varied by region and age. ⋯ The timing of MeCP2 expression in the granule cell layer is coincident with the onset of granule cell synapse formation. Although more subtle, the degree of MeCP2 expression in cortex and hippocampus was most closely correlated with synaptogenesis in both regions. Our finding that MeCP2 expression is correlated with synaptogenesis is consistent with the hypothesis that Rett Syndrome is caused by defects in the formation or maintenance of synapses.
-
Comparative Study
Differential effects of testosterone on protein synthesis activity in male and female quail brain.
In Japanese quail, testosterone (T) increases the Nissl staining density in the medial preoptic nucleus (POM) in relation to the differential activation by T of copulatory behavior. The effect of T on protein synthesis was quantified here in 97 discrete brain regions by the in vivo autoradiographic (14)C-leucine (Leu) incorporation method in adult gonadectomized male and female quail that had been treated for 4 weeks with T or left without hormone. T activated male sexual behaviors in males but not females. ⋯ The POM boundaries were defined by a denser Leu incorporation than the surrounding area and incorporation was increased by T more in males (25%) than in females (6%). These results confirm that protein synthesis in brain areas relevant to the control of sexual behavior can be affected by the sex of the subjects or their endocrine condition and that T can have differential effects in the two sexes. These anabolic changes should reflect the sexually differentiated neurochemical mechanisms mediating behavioral activation.
-
Comparative Study
Carbachol in the pontine reticular formation of C57BL/6J mouse decreases acetylcholine release in prefrontal cortex.
The prefrontal cortex and brainstem modulate autonomic and arousal state control but the neurotransmitter mechanisms underlying communication between prefrontal cortex and brainstem remain poorly understood. This study examined the hypothesis that microdialysis delivery of carbachol to the pontine reticular formation (PRF) of anesthetized C57BL/6J (B6) mouse modulates acetylcholine (ACh) release in the frontal association cortex. Microdialysis delivery of carbachol (8.8 mM) to the PRF caused a significant (P<0.01) decrease (-28%) in ACh release in the frontal association cortex, a significant (P<0.01) decrease (-23%) in respiratory rate, and a significant (P<0.01) increase (223%) in time to righting after anesthesia. ⋯ In vitro treatment with carbachol (1 mM) caused a significant (P<0.01) increase in [(35)S]GTPgammaS binding in the frontal association cortex (62%) and basal forebrain nuclei including medial septum (227%), vertical (210%) and horizontal (165%) limbs of the diagonal band of Broca, and substantia innominata (127%). G protein activation by carbachol was concentration-dependent and blocked by atropine, indicating that the carbachol-stimulated [(35)S]GTPgammaS binding was mediated by muscarinic cholinergic receptors. Together, the in vitro and in vivo data show for the first time in B6 mouse that cholinergic neurotransmission in the PRF can significantly alter ACh release in frontal association cortex, arousal from anesthesia, and respiratory rate.
-
Although there has been growing interest in the neuroanatomical and physiological mechanisms underlying aggressive behavior, little work has focused on possible mechanisms controlling natural plasticity in aggression. In the current study, we used naturally occurring changes in aggression level displayed by female Peromyscus californicus across the estrous cycle and parallel changes in c-fos expression to examine possible brain regions involved in mediating this plasticity. We found that c-fos expression was increased in females exposed to a conspecific female intruder compared with control females in numerous brain regions thought to be involved in the control of aggression. ⋯ Conversely, c-fos increased in the medial amygdala (MeA) across all stages of estrus compared with controls, suggesting the MeA is not involved in mediating changes in individual levels of aggression. Moreover, we found correlations between several measures of aggression and c-fos expression in the BNST and LSv but not the MeA, again suggesting a role in mediating aggression plasticity for the former two but not the latter brain region. We further hypothesize that the BNST and the LSv may be involved more generally in mediating natural changes in aggression, such as increases often observed after individuals win aggressive interactions against conspecifics.