Neuroscience
-
Changes in the signaling of wide dynamic range neurons and the expression of glutamate transporters in the lumbar spinal dorsal horn of rats with Taxol-induced hyperalgesia are detailed in this report. Deep spinal lamina neurons have significantly increased spontaneous activity and after-discharges to noxious mechanical stimuli, increased responses to both skin heating and cooling, and increased after-discharges and abnormal windup to transcutaneous electrical stimuli. ⋯ These results suggest a state of increased excitability develops in spinal pain-signaling neurons as a consequence of decreased glutamate clearance. These changes in dorsal horn neurobiology likely in turn contribute to the hyper-responsiveness to sensory stimuli seen in animals treated with Taxol and may play a role in the pain seen in cancer patients receiving Taxol.
-
Neurofibromatosis type I is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibrinomin, the protein product of the NF1 gene (neurofibromin gene (human)), is a guanosine triphosphate activating protein for p21(ras). ⋯ When nerve growth factor was removed 48 h before conducting release experiments, nerve growth factor-induced augmentation of immunoreactive calcitonin gene-related peptide release from Nf1+/- neurons was more pronounced than in Nf1+/- sensory neurons that were treated with nerve growth factor continuously for 5-7 days. Thus, sensory neurons from mice with a heterozygous mutation of the Nf1 gene that is analogous to the human disease neurofibromatosis type I, exhibit increased sensitivity to chemical stimulation. This augmented responsiveness may explain the abnormal pain sensations experienced by people with neurofibromatosis type I and suggests an important role for guanosine triphosphate activating proteins, in the regulation of nociceptive sensory neuron sensitization.
-
Food intake is regulated by signals from the gastrointestinal tract. Both stimulation and inhibition of food intake may be mediated by upper gastrointestinal tract hormones, e.g. ghrelin and cholecystokinin that act at least partly via vagal afferent neurones. We now report that vagal afferent neurones in both rat and man express melanin-concentrating hormone and its receptor, melanin-concentrating hormone-1R. ⋯ The cholecystokinin-1 receptor antagonist lorglumide inhibited food-induced down-regulation of melanin-concentrating hormone and melanin-concentrating hormone-1R. We conclude that the satiety hormone cholecystokinin acts on vagal afferent neurones to inhibit expression of melanin-concentrating hormone and its receptor. Since the melanin-concentrating hormone system is associated with stimulation of food intake this effect of cholecystokinin may contribute to its action as a satiety hormone.
-
The GABAB receptors are generally considered to be classical Gi-coupled receptors that lack the ability to mobilize intracellular Ca2+ without the aid of promiscuous G proteins. Here, we report the ability of GABAB receptors to promote calcium influx into primary cultures of rat cortical neurons and transfected Chinese hamster ovary cells. Chinese hamster ovary cells were transfected with GABAB1(a) or GABAB1(b) subunits along with GABAB2 subunits. ⋯ The selective store-operated channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride prevented increases in intracellular Ca2+ levels as did performing the assays in Ca2+ free buffers. In conclusion, GABAB receptors expressed in Chinese hamster ovary cells and endogenously expressed in rat cortical neurons promote Ca2+ entry into the cell via the activation of store-operated channels, using a mechanism that is dependent on Gi/o heterotrimeric proteins and phospholipase Cbeta. These findings suggest that the neuronal effects mediated by GABAB receptors may, in part, rely on the receptor's ability to promote Ca2+ influx.
-
The monocarboxylate transporters 1 and 4 are expressed in brain as well as in skeletal muscle and play important roles in the energy metabolism of both tissues. In brain, monocarboxylate transporter 1 occurs in astrocytes, ependymocytes, and endothelial cells while monocarboxylate transporter 4 appears to be restricted to astrocytes. In muscle, monocarboxylate transporter 1 is enriched in oxidative muscle fibers whereas monocarboxylate transporter 4 is expressed in all fibers, with the lowest levels in oxidative fiber types. ⋯ Our findings show that cross-reinnervation causes pronounced changes in the expression levels of monocarboxylate transporter 1 and monocarboxylate transporter 4, probably as a direct consequence of the new pattern of nerve impulses. The data indicate that the mode of innervation dictates the expression of monocarboxylate transporter proteins in the target cells and that the change in monocarboxylate transporter isoform profile is an integral part of the muscle fiber transformation that occurs after cross-reinnervation. Our findings support the hypothesis that the expression of monocarboxylate transporter 1 and monocarboxylate transporter 4 in excitable tissues is regulated by activity.