Neuroscience
-
Comparative Study
Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit.
Chemotherapeutics in the taxane and vinca-alkaloid classes sometimes produce a painful peripheral neuropathy for which there is no validated treatment. Experiments with rat models of paclitaxel- and vincristine-evoked pain suggest that these conditions may not respond to all of the analgesics that have efficacy in other models of painful peripheral neuropathy. We tested gabapentin as a potential analgesic for paclitaxel- and vincristine-evoked pain. ⋯ Paclitaxel-evoked painful peripheral neuropathy was associated with an increased expression of the alpha(2)delta-1 subunit in the spinal dorsal horn, but not in the dorsal root ganglia. The spinal cord increase was normalized by repeated gabapentin injections. Together, these findings suggest that repeated dosing with gabapentin may be beneficial in patients with chemotherapy-evoked painful peripheral neuropathy and that gabapentin's mechanisms of action may include normalization of the nerve injury-evoked increase in calcium channel alpha(2)delta-1 subunit expression.
-
The effect of delayed 2-amino-6-trifluoromethoxy-benzothiazole (riluzole) treatment on injured motoneurons was studied. The L4 ventral root of adult rats was avulsed and reimplanted into the spinal cord. Immediately after the operation or with a delay of 5, 10, 14 or 16 days animals were treated with riluzole (n=5 in each group) while another four animals remained untreated. ⋯ M., respectively). Thus, riluzole dramatically enhanced the survival and reinnervating capacity of injured motoneurons not only when treatment started immediately after injury but also in cases when riluzole treatment was delayed for up to 10 days. These results suggest that motoneurons destined to die after ventral root avulsion are programmed to survive for some time after injury and riluzole is able to rescue them during this period of time.
-
Cocaine inhibits survival and growth of rat locus coeruleus (LC) neurons, which may mediate alterations in attention, following in utero exposure to cocaine. These effects are most severe in early gestation during peak neuritogenesis. Prenatal cocaine exposure may specifically decrease LC survival through an apoptotic pathway involving caspases. ⋯ In addition, cleavage of caspase-3 target proteins, alpha-fodrin and poly (ADP-ribose) polymerase (PARP) were observed following cocaine treatment. In contrast, SN neurons showed either significant reductions, or no significant changes, in caspase-3, -8 or -9 activities or caspase-3 target proteins, alpha-fodrin and PARP. Thus, cocaine exposure in vitro may preferentially induce apoptosis in fetal LC neurons putatively regulated by Bax, via activation of caspases and their downstream target proteins.
-
Comparative Study
Morphology and synaptic input of substance P receptor-immunoreactive interneurons in control and epileptic human hippocampus.
Substance P (SP) is known to be a peptide that facilitates epileptic activity of principal cells in the hippocampus. Paradoxically, in other models, it was found to be protective against seizures by activating substance P receptor (SPR)-expressing interneurons. Thus, these cells appear to play an important role in the generation and regulation of epileptic seizures. ⋯ In the epileptic samples their morphology is considerably altered, they possessed more dendritic branches, which often became beaded. Analyses of synaptic coverage revealed that the ratio of symmetric synaptic input of SPR-immunoreactive cells has increased in epileptic samples. Our results suggest that SPR-positive cells are preserved while principal cells are present in the CA1 region, but show reactive changes in epilepsy including intense branching and growth of their dendritic arborization.
-
Our laboratory has previously characterized age-dependent changes in nociception upon acute morphine withdrawal. This study characterizes changes in mechanical and thermal nociception following acute, intermittent, or continuous morphine administration in infant (postnatal days 5-8) and young (postnatal days 19-21) rats. Morphine was given as a single acute administration (AM), intermittently twice a day for 3 days (IM), or continuously for 72 h via pump (CM). ⋯ In contrast to CM, withdrawal-associated thermal hyperalgesia was seen in both ages following IM. In conclusion, CM versus IM differentially modified mechanical and thermal nociception, suggesting that opioid-dependent thermal hyperalgesia and mechanical allodynia can be dissociated from each other in infant and young rats. Furthermore, tolerance, opioid-induced hypersensitivity, and withdrawal-associated hypersensitivity are age-specific and may be mediated by distinct mechanisms.