Neuroscience
-
The intra-hippocampal administration of interleukin-1beta (IL-1beta) as well as the induction of elevated but physiological levels of IL-1beta within the hippocampus interferes with the formation of long-term memory. There is evidence suggesting that the induction of prostaglandin (PG) formation by IL-1beta is involved in impairments in working and spatial memory following IL-1beta. ⋯ Cyclooxygenase (COX) inhibition blocked the disruption in contextual fear conditioning produced by IL-1beta and COX inhibition alone also disrupted contextual memory, suggesting an inverted U-shaped relationship between PG levels and memory. In addition to demonstrating the necessity of PGs in IL-1beta-mediated memory deficits, we also show that PGs injected directly into the dorsal hippocampus are sufficient to impair context memory and significantly reduce post-conditioning levels of BDNF within the hippocampus, suggesting a possible mechanism for the memory-impairing effects of PGs.
-
Netrin-1 is a guidance cue molecule fundamental to the organization of neuronal connectivity during development. Netrin-1 and its receptors, deleted in colorectal cancer (DCC) and UNC-5 homologues (UNC-5), continue to be expressed in the adult brain, although neither their function nor the kinds of events that activate their expression are known. Two lines of evidence suggest a role for netrin-1 in amphetamine-induced dopamine plasticity in the adult. ⋯ Using immunohistochemistry, we showed that both DCC and UNC-5 receptors are highly expressed by adult mesocorticolimbic dopamine neurons. These results provide the first evidence that repeated exposure to a stimulant drug such as amphetamine affects netrin-1 receptor expression in the adult brain. Taken together, our findings suggest that changes in netrin-1 receptor expression may play a role in the lasting effects of exposure to amphetamine and other stimulant drugs.
-
Analgesic effects of delta opioid receptor (DOR) -selective agonists are enhanced during persistent inflammation and arthritis. Although the underlying mechanisms are still unknown, membrane density of DOR was shown to be increased 72 h after induction of inflammation, an effect abolished in mu opioid receptor (MOR) -knockout (KO) mice [Morinville A, Cahill CM, Kieffer B, Collier B, Beaudet A (2004b) Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain 109:266-273]. ⋯ In contrast, kappa opioid receptor knockout did not affect deltorphin II-induced antihyperalgesia. As evaluated using mice lacking endogenous opioid peptides, the regulation of DOR's effects was also independent of beta-endorphin, enkephalins, or dynorphin opioids known to be released during persistent inflammation. We therefore conclude that DOR-mediated antihyperalgesia is dependent on MOR expression but that activation of MOR by endogenous opioids is probably not required.
-
Although it has been suggested that presynaptic active zone (AZ) may be preassembled, it is still unclear which entities carry the various proteins to the AZ during synaptogenesis. Here, I propose that aggregates of dense core vesicles (DCV) and small clear vesicles in the axons of young rat hippocampal cultures are carriers containing preformed AZ and synaptic vesicle (SV) components on their way to developing synapses. The aggregates were positively labeled with antibodies against Bassoon and Piccolo (two AZ cytomatrix proteins), VAMP, SV2, synaptotagmin (three SV membrane proteins), and synapsin I (a SV-associated protein). ⋯ Serial sections confirmed that the aggregates were not synaptic junctions sectioned en face. Labeling intensities of Bassoon and Piccolo measured from serially sectioned transport aggregates and AZ were within range of each other, suggesting that one or a few aggregates, but not individual DCV, can carry sufficient Bassoon and Piccolo to form an AZ. The present findings provide the first ultrastructural evidence localizing various AZ and SV proteins in a preassembled multi-vesicle transport aggregate that has the potential to quickly form a functional active zone.
-
Human studies show that the number of teenagers abusing anabolic androgenic steroids (AAS) is increasing. During adolescence, brain development is altered by androgen exposure, which suggests that AAS may potentially alter central nervous system (CNS) development. The goal of the present study was to determine whether pubertal AAS exposure increased dendritic spine densities on neurons within the medial amygdala and the dorsal hippocampus. ⋯ However, spine densities remained significantly elevated after AAS withdrawal in the CA1 region of the hippocampus, suggesting that pubertal AAS exposure may have a long-lasting impact on CA1 hippocampal neuroanatomy. Since pubertal AAS exposure increased spine densities and most excitatory synapses in the CNS occur on dendritic spines, AAS may increase neuronal excitation. It is proposed that this increase in excitation may underlie the behavioral responses seen in pubertal AAS-treated male rats.