Neuroscience
-
There is a gender-related comorbidity of pain-related and inflammatory bowel diseases with psychiatric diseases. Since the impact of experimental gastrointestinal inflammation on the emotional-affective behavior is little known, we examined whether experimental gastritis modifies anxiety, stress coping and circulating corticosterone in male and female Him:OF1 mice. Gastritis was induced by adding iodoacetamide (0.1%) to the drinking water for at least 7 days. ⋯ Collectively, these data show that iodoacetamide treatment causes gastritis in a gender-related manner, its severity being significantly greater in female than in male mice. The induction of gastritis in female mice is associated with a reduction of circulating corticosterone and an enforcement of behavioral indices of anxiety. Gastric inflammation thus has a distinct gender-dependent influence on emotional-affective behavior and its neuroendocrine control.
-
Comparative Study
Different roles of nitric oxide synthase-1 and -2 between herpetic and postherpetic allodynia in mice.
We investigated using the mice role of nitric oxide synthase (NOS) in the spinal dorsal horn in herpetic and postherpetic pain, especially allodynia, which was induced by transdermal inoculation of the hind paw with herpes simplex virus type-1 (HSV-1). The virus inoculation induced NOS2 expression in the lumbar dorsal horn of mice with herpetic allodynia, but not postherpetic allodynia. There were no substantial alternations in the expression level of NOS1 at the herpetic and postherpetic stages. ⋯ The expression level of NOS1 mRNA in the dorsal root ganglia was similar between mice with and without postherpetic allodynia. The results suggest that herpetic and postherpetic allodynia is mediated by nitric oxide in the dorsal horn and that NOS2 and NOS1 are responsible for herpetic and postherpetic allodynia, respectively. It may be worth testing the effects of NOS2 and NOS1 inhibitors on herpetic pain and postherpetic neuralgia in human subjects, respectively.
-
Methamphetamine (METH) is a powerful psychostimulant that increases glutamate (Glu) levels in the mammalian brain and it is currently known that hippocampi are particularly susceptible to METH. Moreover, it is well established that the overactivation of N-methyl-d-aspartate (NMDA) and AMPA ionotropic Glu receptors causes excitotoxicity. In the present study, we investigated the effect of acute (30 mg/kg) versus escalating dose (ED) administration of METH on NMDA receptor 1, NMDA receptor 2 and glutamate receptor 2 (GluR2) subunit expression in the hippocampus and on memory. ⋯ The impact of METH on working memory was evaluated using the Y maze test and revealed significant mnemonic deficit in the rats acutely treated with the drug. Overall, our results suggest a protection mechanism under conditions of METH administration by decreasing permeability and/or functionality of NMDA and AMPA receptors, which has implications on memory. So, the participation of the glutamatergic system should be considered as an important pharmacological target to design new strategies to prevent or diminish the harmful effect of drug consumption.
-
Modulation of membrane properties and excitability of retinal ganglion cells (RGCs) by dopamine was investigated in rat retinal slices, using whole cell patch clamp techniques. Application of dopamine (10 microM) caused a small depolarization of the membrane potential, a reduction of the input resistance and a decrease in the number of current-evoked action potentials of RGCs, and these effects were blocked by a D1 antagonist (SCH23390, 10 microM), but not by a D2 antagonist (sulpiride, 10 microM). SKF38393 (10 microM), a D1 agonist, but not quinpirole (10 microM), a D2 agonist, mimicked the effects of dopamine on RGCs. ⋯ SKF38393 and 8-Br-cAMP increased the amplitude of I(h), which was blocked by KT5720. The dopamine effects were abolished when the preparations were pre-incubated by ZD7288. These data strongly suggest that the dopamine effects on rat RGCs may be, at least in part, mediated by modulation of I(h) through the cAMP- and PKA-dependent pathway.
-
Tryptophan hydroxylase-2 (TPH2), the rate-limiting enzyme in 5-HT synthesis in the brain, is a candidate for participation in a mechanism mediating the antidepressant effect of selective 5-HT reuptake inhibitors such as fluoxetine. Using real-time reverse transcription-polymerase chain reaction (RT-PCR) and semi-quantitative RT-PCR techniques, we have examined the effects of fluoxetine administration with drinking water (7.5 mg/kg/day) for 2, 4 and 8 weeks on TPH2 mRNA expression in the midbrain part of the dorsal raphe nucleus (DRN) and in the brainstem containing the rest of the raphe complex. Fluoxetine treatment for 4 and 8 weeks significantly increased basal TPH2 mRNA levels in the midbrain, an effect that was correlated with the appearance of antidepressant-like effects in the forced swim test. ⋯ In these animals, the swim test also produced a marked decrease in 5-HT metabolite (5-hydroxyindoleacetic acid (5-HIAA)) content in the amygdala. Fluoxetine treatment for 4 and 8, but not for 2 weeks, abolished these swim-induced changes in TPH2 and 5-HTT mRNAs levels in the midbrain and 5-HIAA content in the amygdala. The results of the present study suggest that TPH2 gene expression in the midbrain part of the DRN is implicated in depression and stress response, as well as in the antidepressant fluoxetine action.