Neuroscience
-
It has been shown that chronic cocaine increases prodynorphin mRNA in the caudate putamen and decreases it in the hypothalamus. In addition, treatment with a kappa-opioid receptor agonist produced the opposite effect on prodynorphin gene expression in these brain regions and also evoked a decrease in the hippocampus. It is already known that kappa-opioid receptor agonists decrease the development of sensitization to some of the behavioral effects of cocaine. ⋯ Cocaine treatment still produced a decrease in this parameter in the hypothalamus and an increase in the caudate putamen. In contrast, in the hippocampus, the decrease in prodynorphin mRNA produced by U-69593 was no longer evident after PCA and cocaine, which previously had no effect, now increased it in the serotonin-depleted group. These findings suggest that serotonin is necessary to maintain normal levels of dynorphin mRNA in all of the investigated brain areas and that the regulation of prodynorphin mRNA expression by chronic treatment with a kappa-opioid receptor agonist or cocaine requires serotonin in the hippocampus, but not in the hypothalamus or caudate putamen.
-
Comparative Study
A threshold neurotoxic amphetamine exposure inhibits parietal cortex expression of synaptic plasticity-related genes.
Compulsive drug abuse has been conceptualized as a behavioral state where behavioral stimuli override normal decision making. Clinical studies of methamphetamine users have detailed decision making changes and imaging studies have found altered metabolism and activation in the parietal cortex. To examine the molecular effects of amphetamine (AMPH) on the parietal cortex, gene expression responses to amphetamine challenge (7.5 mg/kg) were examined in the parietal cortex of rats pretreated for nine days with either saline, non-neurotoxic amphetamine, or neurotoxic AMPH dosing regimens. ⋯ This effect was specific to these genes as tissue plasminogen activator (t-PA), neuropeptide Y (NPY) and c-jun expression in response to AMPH challenge was unaltered or enhanced by amphetamine pretreatments. In the striatum, there were no differences between saline, neurotoxic AMPH, and non-neurotoxic AMPH pretreatments on ARC, NGFI-A or NGFI-B expression elicited by the AMPH challenge. These data indicate that the responsiveness of synaptic plasticity-related genes is sensitive to disruption specifically in the parietal cortex by threshold neurotoxic AMPH exposures.
-
Morphine, a mu-opioid receptor agonist, is a commonly prescribed treatment for pain. Although highly efficacious, morphine has many unwanted side effects including disruption of sleep and obtundation of wakefulness. One mechanism by which morphine alters sleep and wakefulness may be by modulating GABAergic signaling in brain regions regulating arousal, including the pontine reticular nucleus, oral part (PnO). ⋯ Finally, microinjections followed by 2 h recordings of electroencephalogram and electromyogram tested the hypothesis that PnO morphine administration disrupts sleep (n=8 rats). Morphine significantly (P<0.05) increased the percent of time spent in wakefulness (65%) and significantly (P<0.05) decreased the percent of rapid eye movement (REM) sleep (-53%) and non-REM sleep (-69%). The neurochemical and behavioral data suggest that morphine may disrupt sleep, at least in part, by decreasing GABAergic transmission in the PnO.
-
Purine receptors have been implicated in central neurotransmission from nociceptive primary afferent neurons, and ATP-mediated currents in sensory neurons have been shown to be mediated by both P2X3 and P2X2/3 receptors. The aim of the present study was to quantitatively examine the distribution of P2X2 and P2X3 receptors in primary afferent cell bodies in the rat trigeminal ganglion, including those innervating the dura. In order to determine the classes of neurons that express these receptor subtypes, purine receptor immunoreactivity was examined for colocalization with markers of myelinated (neurofilament 200; NF200) or mostly unmyelinated, non-peptidergic fibers (Bandeiraea simplicifolia isolectin B4; IB4). ⋯ Trigeminal ganglion neurons innervating the dura mater were retrogradely labeled and 52% of these neurons expressed either P2X2 or P2X3 or both receptors. These results are consistent with electrophysiological findings that P2X receptors exist on the central terminals of trigeminal afferent neurons, and provide evidence that afferents supplying the dura express both receptors. In addition, the data suggest specific differences exist in P2X receptor expression between the spinal and trigeminal nociceptive systems.
-
We previously showed that prolonged morphine treatment and chronic inflammation both enhanced delta opioid receptor (deltaOR) cell surface density in lumbar spinal cord neurons. Here, we sought to determine whether administration of morphine to rats with chronic inflammation would further increase the bio-availability of deltaOR, and thereby the analgesic properties of the deltaOR agonist deltorphin, over that produced by inflammation alone. We found that chronic inflammation produced by injection of complete Freund's adjuvant (CFA) into the hind paw resulted in a bilateral increase in the binding and internalization of fluorescent deltorphin in neurons of the lumbar spinal cord as did prolonged morphine treatment [Morinville A, Cahill CM, Aibak H, Rymar VV, Pradhan A, Hoffert C, Mennicken F, Stroh T, Sadikot AF, O'Donnell D, Clarke PB, Collier B, Henry JL, Vincent JP, Beaudet A (2004a) Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. ⋯ Behaviorally, it significantly enhanced the antihyperalgesic effects of deltorphin (plantar test; % maximum possible antihyperalgesic effect (MPAHE)=113.5%+/-32.4% versus 26.1%+/-11.6% in rats injected with CFA alone) but strongly reduced the antinociceptive efficacy of the drug (tail-flick test; % maximum possible antinociceptive effect (MPE)=29.6%+/-3.6% versus 66.6%+/-6.3% in rats injected with CFA alone) suggesting that the latter, but not the former, is linked to the deltaOR trafficking events observed neuroanatomically. These results demonstrate that in chronic inflammation, the antihyperalgesic effects of deltaOR agonists may be enhanced by morphine pre-treatment. They also reveal a dichotomy between mechanisms underlying antihyperalgesic and antinociceptive effects of deltaOR agonists.