Neuroscience
-
The calcium/calmodulin (CaM) kinase cascade regulates gene transcription, which is required for long-term memory formation. Previous studies with Camkk2 null mutant mice have shown that in males calcium/calmodulin kinase kinase beta (CaMKKbeta) is required for spatial memory formation and for activation of the transcription factor cyclic AMP-responsive element binding protein (CREB) in the hippocampus by spatial training. ⋯ Finally, a transcriptional analysis of male Camkk2 null mutants led to the identification of a gene, glycosyl phosphatidyl-inositol anchor attachment protein 1 (GAA1), whose hippocampal mRNA expression was up-regulated by spatial and contextual training in male but not in female wild-type mice. Taken together, we conclude that CaMKKbeta has a male-specific function in hippocampal memory formation and we have identified male-restricted transcription occurring during hippocampal memory formation.
-
A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.
-
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). With the exception of a few rare familial forms of the disease, the precise molecular mechanisms underlying PD are unknown. Inflammation is a common finding in the PD brain, but due to the limitation of postmortem analysis its relationship to disease progression cannot be established. ⋯ Using Mcp-1/Ccl2 knockout mice backcrossed onto a C57BL/6J background we found that MPTP-stimulated Mip-1alpha/Ccl3 and Mip-1beta/Ccl4 mRNA expression was significantly lower in the knockout mice; suggesting that Mcp-1/Ccl2 contributes to MPTP-enhanced expression of Mip-1alpha/Ccl3 and Mip-1beta/Ccl4. However, stereological analysis of SNpc neuronal loss in Mcp-1/Ccl2 knockout and wild-type mice showed no differences. These findings suggest that it is the ability of dopaminergic SNpc neurons to survive an inflammatory insult, rather than genetically determined differences in the inflammatory response itself, that underlie the molecular basis of MPTP resistance.
-
The loss of dopamine neurons combined or not with the subsequent administration of L-DOPA in patients with Parkinson's disease or in experimental models of the disease results in altered GABAergic signaling throughout the basal ganglia, including the striatum and the substantia nigra, pars reticulata. However, the molecular mechanisms involved in altered GABA neurotransmission remain poorly understood. In order to be released from synaptic vesicles, newly synthesized GABA is transported from the cytosol into synaptic vesicles by a vesicular GABA transporter. ⋯ Systemic L-DOPA also increased vGAT protein levels in the ipsi- and contralateral SNr. As a whole, the results provide original evidence that vGAT expression is altered in the 6-hydroxydopamine model of Parkinson's disease. They also suggest that the behavioral effects induced by a subchronic administration of L-DOPA to 6-hydroxydopamine-lesioned rats involve an increase in the vesicular release of GABA by striatonigral neurons.
-
The vertebrate neuromuscular junction (NMJ) is known to be a cholinergic synapse at which acetylcholine (ACh) is released from the presynaptic terminal to act on postsynaptic nicotinic ACh receptors. There is now growing evidence that glutamate, which is the main excitatory transmitter in the CNS and at invertebrate NMJs, may have a signaling function together with ACh also at the vertebrate NMJ. In the CNS, the extracellular concentration of glutamate is kept at a subtoxic level by Na(+)-driven high-affinity glutamate transporters located in plasma membranes of astrocytes and neurons. ⋯ GLT was relatively higher in the slow-twitch muscle soleus than in the fast-twitch muscle extensor digitorum longus, whereas GLAST was relatively higher in extensor digitorum longus than in soleus. The findings show--together with previous demonstration of vesicular glutamate, a vesicular glutamate transporter and glutamate receptors--that mammalian NMJs contain the machinery required for synaptic release and action of glutamate. This indicates a signaling role for glutamate at the normal NMJ and provides a basis for the ability of denervated muscle to be reinnervated by glutamatergic axons from the CNS.