Neuroscience
-
The nocebo effect is a phenomenon that is opposite to the placebo effect, whereby expectation of a negative outcome may lead to the worsening of a symptom. Thus far, its study has been limited by ethical constraints, particularly in patients, as a nocebo procedure is per se stressful and anxiogenic. It basically consists in delivering verbal suggestions of negative outcomes so that the subject expects clinical worsening. ⋯ CCK-antagonists have been found to block this anxiety-induced hyperalgesia, thus opening up the possibility of new therapeutic strategies whenever pain has an important anxiety component. Other conditions, such as Parkinson's disease, although less studied, have been found to be affected by nocebo suggestions as well. All these findings underscore the important role of cognition in the therapeutic outcome, and suggest that nocebo and nocebo-related effects might represent a point of vulnerability both in the course of a disease and in the response to a therapy.
-
The midbrain periaqueductal gray (PAG), and its descending projections to the rostral ventromedial medulla (RVM), provide an essential neural circuit for opioid-produced antinociception. Recent anatomical studies have reported that the projections from the PAG to the RVM are sexually dimorphic and that systemic administration of morphine significantly suppresses pain-induced activation of the PAG in male but not female rats. Given that morphine antinociception is produced in part by disinhibition of PAG output neurons, it is hypothesized that a differential activation of PAG output neurons mediates the sexually dimorphic actions of morphine. ⋯ The absolute number of PAG-RVM neurons activated by morphine was also greater in males. These data demonstrate widespread disinhibition of PAG neurons following morphine administration. The greater morphine-induced activation of PAG output neurons in male compared with female rats is consistent with the greater morphine-induced antinociception observed in males.
-
Opioids are extensively used analgesics yet can paradoxically increase pain sensitivity in humans and rodents. This hyperalgesia is extensively conceptualized to be a consequence of opioid receptor activity, perhaps providing an adaptive response to analgesia, and to utilize N-methyl-D-aspartate (NMDA) receptors. These assumptions were tested here in opioid receptor triple knock-out (KO) mice lacking all three genes encoding opioid receptors (mu, delta, and kappa) by comparing their thermal nociceptive responses to the opioids morphine and oxymorphone with those of B6129F(1) controls. ⋯ In contrast, continuously infusing KO mice with opioids caused no detectable analgesic response, but only immediate and steady declines in nociceptive thresholds culminating in several days of unremitting hyperalgesia. Finally, injecting the non-competitive NMDA receptor antagonist MK-801 during opioid infusion markedly reversed hyperalgesia in control but not KO mice. These data demonstrate that sustained morphine and oxymorphone delivery causes hyperalgesia independently of prior or concurrent opioid or NMDA receptor activity or opioid analgesia, indicating the contribution of mechanisms outside of current conceptions, and are inconsistent with proposals of hyperalgesia as a causative factor of opioid analgesic tolerance.
-
The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. ⋯ Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1-16], we speculate that virtually all DRG neurons in adult mouse express VGLUTs and use glutamate as transmitter.
-
Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. ⋯ Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema.