Neuroscience
-
Several lines of evidence suggest that extracellular ATP plays a role in pain signaling through the activation of ionotropic P2X-receptors, especially homomeric P2X3- and heteromeric P2X2/3-receptors on capsaicin-sensitive and -insensitive primary afferent neurons, respectively, at peripheral and spinal sites. We investigated the mechanisms of the induction and maintenance of mechanical allodynia produced by a single intrathecal (i.t.) administration of ATP in rats. We found that i.t. administration of ATP and the P2X-receptor agonist alpha,beta-methylene-ATP produced tactile allodynia which lasted more than 1 week. ⋯ ATP administration caused spinal microglial activation within 1 day, and astrocytic activation which peaked at 1-3 days after ATP administration. Furthermore, minocycline, a microglial inhibitor, attenuated the induction but not the early and late phases of maintenance, while fluorocitrate, a glial metabolic inhibitor, attenuated the induction and the early phase but not the late phase of maintenance. Taken together, these results suggest that the activation of P2X-receptors, most likely spinal P2X2/3-receptors on capsaicin-insensitive primary afferent neurons, triggers the induction of long-lasting allodynia through NMDA receptors, and the induction and early maintenance phase, but not the late phase, is mediated through the functions of spinal glial cells.
-
Nervous system formation integrates control of cellular proliferation and differentiation and is mediated by multipotent neural progenitor cells that become progressively restricted in their developmental potential before they give rise to differentiated neurons and glial cells. Evidence from different experimental systems suggests that Geminin is a candidate molecule linking proliferation and differentiation during nervous system development. We show here that Geminin and its binding partner Cdt1 are expressed abundantly by neural progenitor cells during early mouse neurogenesis. ⋯ Bromo-deoxy-uridine (BrdU) incorporation experiments reveal a cell cycle specific expression in neural progenitor cells, with Geminin being present from S to M phase, while Cdt1 expression characterizes progenitor cells in G1 phase. Furthermore, in vitro differentiation of adult neurosphere cultures shows downregulation of Geminin/Cdt1 in the differentiated state, in line with our data showing that Geminin is present in neural progenitor cells of the CNS during mouse embryogenesis and adulthood and becomes downregulated upon cell fate specification and differentiation. This suggests a role for Geminin in the formation and maintenance of the neural progenitor cells.
-
In the months following transection of adult rat peripheral nerve some sensory neurons undergo apoptosis. Two weeks after sciatic nerve transection some neurons in the L4 and L5 dorsal root ganglia begin to show immunoreactivity for nestin, a filament protein expressed by neuronal precursors and immature neurons, which is stimulated by neurotrophin-3 (NT-3) administration. The aim of this study was to examine whether NT-3 administration could be compensating for decreased production of neurotrophins or their receptors after axotomy, and to determine the effect on nestin synthesis. ⋯ Some satellite cells surrounding neurons expressed trkA and trkC mRNA and trkC immunoreactivity. NT-3 administration did not affect neurotrophin mRNA levels in the contralateral ganglia, but decreased the expression of trkA mRNA and increased the expression of trkB mRNA and p75NTR mRNA and protein. These data suggest that systemically administered NT-3 may counteract the decrease, or even increase, neurotrophin responsiveness in both ipsi- and contralateral ganglia after nerve injury.
-
[N-(piperidin-1-yl)-5-(4-chlorophenyl)-4-methyl-1H-pyrazole-3-carboxyamide] (SR 141716A), a selective cannabinoid CB1 receptor antagonist, injected into the paraventricular nucleus of the hypothalamus (PVN) of male rats, induces penile erection. This effect is mediated by the release of glutamic acid, which in turn activates central oxytocinergic neurons mediating penile erection. Double immunofluorescence studies with selective antibodies against CB1 receptors, glutamic acid transporters (vesicular glutamate transporters 1 and 2 (VGlut1 and VGlut2), glutamic acid decarboxylase-67 (GAD67) and oxytocin itself, have shown that CB1 receptors in the PVN are located mainly in GABAergic terminals and fibers surrounding oxytocinergic cell bodies. ⋯ This increase occurs concomitantly with an almost twofold increase in the pro-erectile effect of SR 141716A injected into the PVN as compared with control rats. The present findings confirm that PVN CB1 receptors, localized mainly in GABAergic synapses that control in an inhibitory fashion excitatory synapses, exert an inhibitory control on penile erection, demonstrating for the first time that chronic blockade of CB1 receptors by SR 141716A increases the density of these receptors in the PVN. This increase is related to an enhanced pro-erectile effect of SR 141716A, which is still present 3 days after the end of the chronic treatment.
-
Similar to kappa-opioids, nociceptin/orphanin FQ (OFQ) exerts anti-mu-opioid actions. This may involve interactions within the circuitry controlling 5-HT neurons in the dorsal raphe nucleus (DRN) that project to the nucleus accumbens (NAcc). To test this hypothesis, we compared the effects of OFQ and kappa-opioids on 5-HT efflux in the CNS of freely behaving rats. ⋯ In contrast, OFQ (300-1000 microM) did not alter mu-opioid-induced increases in 5-HT efflux. In summary, kappa-opioids and OFQ both decreased 5-HT efflux in the CNS. However, in contrast to kappa-opioids, which reversed mu-opioid-induced increases in 5-HT efflux, the anti-mu-opioid effects of OFQ apparently do not involve changes in 5-HT transmission under our experimental conditions.