Neuroscience
-
Neuropathic pain (NPP) due to sensory nerve injury is, in part, the result of peripheral sensitization leading to a long-lasting increase in synaptic plasticity in the spinal dorsal horn. Thus, activation of GABA-mediated inhibitory inputs from sensory neurons could be beneficial in the alleviation of NPP symptoms. Dorsal root ganglia (DRG) conduct painful stimulation from the periphery to the spinal cord. ⋯ However, when muscimol was applied after NPP had already developed, its pain-alleviating effect, although significant, was short-lived. Using a fluorescent tracer, sodium fluorescein, we confirmed that local DRG application results in minimal spread into the corresponding dorsal horn of the ipsilateral spinal cord. GABA(A) receptors in DRG are important in the development of NPP after peripheral nerve injury, making timely exogenous GABAergic manipulation at the DRG level a potentially useful therapeutic modality.
-
Neuronal cell death and its regulation have been extensively studied as an essential process of both neurodevelopment and neurodegenerative conditions. However it is not clear how circulating hormones influence such processes. Therefore we aimed to determine whether the anti-obesity hormone leptin could promote the survival of murine central and peripheral neurons in vitro. ⋯ In addition, it promotes the survival of postnatal, but not embryonic, trigeminal sensory neurons following neurotrophin withdrawal. Our data reveal a novel neuroprotective role for leptin in the peripheral nervous system while expanding on the known anti-apoptotic role of leptin in the CNS. These findings have important implications for our understanding of neuronal viability.
-
Minocycline is a semi-synthetic second-generation tetracycline known to improve cognition in amyloid precursor protein transgenic mice. Whether it can protect the somatostatin (SRIF) receptor-effector system, also involved in learning and memory, from alterations induced by chronic i.c.v. infusion of beta-amyloid peptide (Abeta)(25-35) is presently unknown. Hence, in the present study, we tested the effects of minocycline on the SRIF signaling pathway in the rat temporal cortex. ⋯ Our results show that minocycline prevents the decrease in SRIF receptor density and somatostatin receptor (sst) 2 expression and the attenuated capacity of SRIF to inhibit adenylyl cyclase (AC) activity, alterations present in the temporal cortex of Abeta(25-35)-treated rats. Furthermore, minocycline blocks the Abeta(25-35)-induced decrease in phosphorylated cyclic AMP (cAMP) response element binding protein (p-CREB) content and G-protein-coupled receptor kinase 2 (GRK) protein expression in this brain area. Altogether, the present data demonstrate that minocycline in vivo provides protection against Abeta-induced impairment of the SRIF signal transduction pathway in the rat temporal cortex and suggest that it may have a potential as a therapeutic agent in human Alzheimer's disease, although further studies are warranted.
-
Our recent study has shown that activation of transient receptor potential A1 channel (TRPA1) by pungent chemicals such as allyl-isothiocyanate (AITC) requires an unidentified cytosolic factor whose action can be mimicked by inorganic polyphosphates. Thus, AITC and other pungent chemicals fail to activate TRPA1 in excised patches. It is unclear whether TRPA1 switches to a conformation that is insensitive to the pungent chemicals, or whether TRPA1 simply becomes completely non-functional and insensitive to all activators when the cytosolic factor is absent. ⋯ Similar to pungent chemicals, Ca(2+) (1-5 microM) failed to activate TRPA1 in inside-out patches, unless polyphosphates were present. These results show that TRPA1 can exist in different functional states: a native state (cell-attached patch) and a non-native state (excised patch). THC can activate TRPA1 even in the absence of polyphosphates, whereas pungent chemicals and Ca(2+) require it for activation.
-
The present studies aimed to determine whether estradiol (E(2)) modulates the stimulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the mesolimbic and nigrostriatal dopaminergic systems. I.c.v. administration of the CART peptide (55-102, 1 microg/3 microl) increased dopamine turnover (3,4-dihydroxyphenylacetic acid, DOPAC) in the nucleus accumbens (NA) and striatum (ST) in ovariectomized (OVX) female Sprague-Dawley rats with E(2)-priming. ⋯ Furthermore, the effects of water-soluble form of E(2) were blocked by E(2) antagonist, tamoxifen, but not by testosterone antagonist, flutamide. Our findings are the first to demonstrate that that E(2) plays a regulatory role in stimulation of CART peptide in mesolimbic and nigrostriatal dopaminergic systems in female rats, and E(2) acts through its own receptor(s) and intracellular mechanisms.