Neuroscience
-
Cortical surface evoked potentials (SEPs) are larger during sleep and characterize a sleep-like state in cortical columns. Since tumor necrosis factor alpha (TNF) may be involved in sleep regulation and is produced as a consequence of waking activity, we tested the hypothesis that direct application of TNF to the cortex will induce a sleep-like state within cortical columns and enhance SEP amplitudes. We found that microinjection of TNF onto the surface of the rat somatosensory cortex enhanced whisker stimulation-induced SEP amplitude relative to a control heat-inactivated TNF microinjection. ⋯ In two separate studies, unilateral deflection of multiple whiskers for 2 h increased the number of TNF-IR cells in layers II-V in columns that also exhibited enhanced cellular ongogene (Fos-IR). TNF-IR also colocalized with NeuN-IR suggesting that TNF expression was in neurons. Collectively these data are consistent with the hypotheses that TNF is produced in response to neural activity and in turn enhances the probability of a local sleep-like state as determined by increases in SEP amplitudes.
-
The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. ⋯ GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.
-
Although circadian rhythms of males and females are different in a variety of ways in many species, their mechanisms have been primarily studied in males. Furthermore, rhythms are dramatically different in diurnal and nocturnal animals but have been studied predominantly in nocturnal ones. In the present study, we examined rhythms in one element of the circadian oscillator, the PER1 protein, in a variety of cell populations in brains of diurnal female grass rats. ⋯ In addition, rhythms were detected within populations of neuroendocrine cells that contain tyrosine hydroxylase. The phase of the rhythm within the SCN was advanced compared with that seen previously in male grass rats. Rhythms beyond the SCN were varied and different from those seen in most nocturnal species, suggesting that signals originating in the SCN are modified by its direct and/or indirect targets in different ways in nocturnal and diurnal species.
-
Noradrenaline (NA) modulates glutamatergic and GABAergic transmission in various areas of the brain. It is reported that some alpha2-adrenoceptor subtypes are expressed in the cerebellar cortex and alpha2-adrenoceptors may play a role in motor coordination. Our previous study demonstrated that the selective alpha2-adrenoceptor agonist clonidine partially depresses spontaneous inhibitory postsynaptic currents (sIPSCs) in mouse cerebellar Purkinje cells (PCs). ⋯ Both alpha2A- and alpha2B-, but not alpha2C-, adrenoceptors were strongly expressed in MLIs at P13, and P31. Therefore, the developmental enhancement of the clonidine-mediated inhibition of sIPSCs is attributed to an age-dependent increase in AP-derived sIPSCs, which can be blocked by clonidine. Thus, presynaptic activation of alpha2-adrenoceptors inhibits cerebellar inhibitory synaptic transmission after the second postnatal week, leading to a restriction of NA signaling, which is mainly mediated by alpha1- and beta2-adrenoceptors in the adult cerebellar neuronal circuit.
-
Although there is evidence that reduced inhibition in the spinal dorsal horn contributes to neuropathic pain, the mechanisms that underlie this are poorly understood. We have previously demonstrated that there is no loss of neurons from laminae I-III in the spared nerve injury (SNI) model [Polgár E, Hughes DI, Arham AZ, Todd AJ (2005) Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the SNI model of neuropathic pain. J Neurosci 25:6658-6666]. ⋯ We found no difference in the intensity of immunolabeling for any of these markers on the two sides of the superficial dorsal horn. These results suggest that there is no significant loss of GABAergic boutons from the denervated area after SNI (which is consistent with the finding that neuronal death does not occur in this model) and that there is no depletion of GABA or GABA(A) receptors at GABAergic synapses within this region. An alternative explanation for disinhibition after nerve injury is that it results from reduced excitatory drive to GABAergic dorsal horn neurons following loss of primary afferent input to these cells.