Neuroscience
-
Axonal action potentials initiate the cycle of synaptic communication that is key to our understanding of nervous system functioning. The field has accumulated vast knowledge of the signature action potential waveform, firing patterns, and underlying channel properties of many cell types, but in most cases this information comes from somatic intracellular/whole-cell recordings, which necessarily measure a mixture of the currents compartmentalized in the soma, dendrites, and axon. Because the axon in many neuron types appears to be the site of lowest threshold for action potential initiation, the channel constellation in the axon is of particular interest. ⋯ Recent studies have developed and applied single-fiber extracellular recording, direct intracellular recording, and optical recording techniques from axons toward understanding the behavior of the axonal action potential. We are starting to understand better how specific channels and other cellular properties shape action potential threshold, waveform, and timing: key elements contributing to downstream transmitter release. From this increased scrutiny emerges a theme of axons with more computational power than in traditional conceptualizations.
-
Activity dependent modification of receptors in the post-synaptic density is a key determinant in regulating the strength of synaptic transmission during development and plasticity. A major mechanism for this recruitment and removal of postsynaptic proteins is the lateral diffusion in the plane of the plasma membrane. ⋯ In recent years significant progress has been achieved using optical approaches such as single particle tracking (SPT) and fluorescence recovery after photobleach (FRAP). Here, we provide an overview of the principles and methodology of these techniques and highlight the contributions they have made to current understanding of protein mobility in the plasma membrane.
-
Ampa receptors mediate the majority of excitatory synaptic transmission in the brain. Thus, the mechanisms that control the developmental and activity-dependent changes in the functional synaptic expression of AMPA receptors are of fundamental importance. Here we focus on the role of GluR2 subunit in synaptic function and plasticity.
-
It has been suggested that NR2B-containing N-methyl-d-aspartate (NMDA) receptors have a selective tendency to promote pro-death signaling and synaptic depression, compared with the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasynaptic NMDA receptor signaling. We have investigated whether NMDA receptors can mediate signaling to survival, death, and synaptic potentiation, in dissociated rat neuronal cultures at a developmental stage prior to significant NR2A expression and subunit-specific differences between synaptic and extrasynaptic NMDA receptors. ⋯ Using a cell culture model of synaptic NMDA receptor-dependent synaptic potentiation, we find that this is mediated exclusively by NR2B-containing N-methyl-D-aspartate receptors, as implicated by NR2B-specific antagonists and the use of selective vs. non-selective doses of the NR2A-preferring antagonist NVP-AAM077. Therefore, within a single neuron, NR2B-NMDA receptors are able to mediate both survival and death signaling, as well as model of NMDA receptor-dependent synaptic potentiation. In this instance, subunit differences cannot account for the dichotomous nature of NMDA receptor signaling.
-
AMPA receptors have been identified in different populations of presynaptic terminals and found to be involved in the modulation of neurotransmitter release. The mechanisms that govern the expression of presynaptic AMPA receptors are not known. One possibility is that pre- and postsynaptic AMPA receptors are regulated according to the same principles. ⋯ Subfractionation and high-resolution immunogold analyses of the rat hippocampus revealed that GluR2 and PICK1 are enriched postsynaptically, but also in presynaptic membrane compartments, including the active zone and vesicular membranes. PICK1 and GluR2 are associated with the same vesicles, which are immunopositive also for synaptophysin and vesicle-associated membrane protein 2. Based on what is known about the function of PICK1 postsynaptically, the present data suggest that PICK1 is involved in the regulation of presynaptic AMPA receptor trafficking and in determining the size of the AMPA receptor pool that modulates presynaptic glutamate release.