Neuroscience
-
Recent studies suggested that acute sound exposure resulting in a temporary threshold shift in young adult animals within a series of maladaptive plasticity changes in central auditory structures. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in post-trauma peripheral hair cell and spiral ganglion cell survival and has been shown to modulate synaptic strength in cochlear nucleus following sound exposure. The present study evaluated levels of BDNF and its receptor (tyrosine kinase B, [TrkB]) in the dorsal cochlear nucleus (DCN) following a unilateral moderate sound exposure in young (7-8 months) and aged (28-29 months) Fischer Brown Norway (FBN) rats. ⋯ Protein levels of the BDNF receptor, TrkB, were also significantly increased in aged but not in young sound-exposed DCN fusiform cells. The present findings suggest a relationship between the up-regulation of BDNF/TrkB and the increase in spontaneous and driven activity previously observed for aged and sound-exposed fusiform cells. This might be due to a selective maladaptive compensatory down-regulation of glycinergic inhibition in DCN fusiform cells.
-
Current data concerning the effects of maternal seizure during pregnancy on newborns are limited. This study was carried out to investigate the effect of prenatal pentylenetetrazol (PTZ)-induced kindling on learning and memory of offspring. Female Wistar rats were kindled with i.p. injections of 25 mg/kg of PTZ on day 13 of their pregnancy. ⋯ Data obtained from shuttle-box studies showed that retention latencies of pups born to kindled dams were significantly reduced compared to those born to control dams. The hippocampus, amygdala and frontal cortex are very important for memory consolidation and our data suggest that subsequent developmental events are not sufficient to overcome the adverse effects of prenatal exposure to maternal seizures to these regions of the brain. These observations may have clinical implications for cognitive and memory dysfunction associated with epilepsy during pregnancy.
-
Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. ⋯ BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, P<0.05). Our data suggest intranasal BDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.
-
In the mammalian retina, excitotoxicity has been shown to be involved in apoptotic retinal ganglion cell (RGC) death and is associated with certain retinal disease states including glaucoma, diabetic retinopathy and retinal ischemia. Previous studies from this lab [Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL (2004) Invest Ophthalmol Vis Sci 45:1531-1543] have demonstrated that acetylcholine (ACh) and nicotine protects against glutamate-induced excitotoxicity in isolated adult pig RGCs through nicotinic acetylcholine receptors (nAChRs). Activation of nAChRs in these RGCs triggers cell survival signaling pathways and inhibits apoptotic enzymes [Asomugha CO, Linn DM, Linn CL (2010) J Neurochem 112:214-226]. ⋯ In these studies, a preconditioning dose of calcium was introduced to cells using a variety of mechanisms before a large glutamate insult was applied to cells. Results from these studies support the hypothesis that preconditioning cells with a relatively low level of calcium before an excitotoxic insult leads to neuroprotection. In the future, these results could provide important information concerning therapeutic agents developed to combat various diseases involved with glutamate-induced excitotoxicity.
-
Several lines of evidence suggest the existence of multiple progestin receptors that may account for rapid and delayed effects of progesterone in the CNS. The delayed effects have been long attributed to activation of the classical progestin receptor (Pgr). Recent studies have discovered novel progestin signaling molecules that may be responsible for rapid effects. ⋯ Analyses of adjacent brain sections showed that the highest expression of mRNAs encoding Pgr, Pgrmc1, Pgrmc2 and Serbp1 was detected in several hypothalamic nuclei important for female reproduction. In contrast, expression patterns of Paqr7 and Paqr8 were low and homogeneous in the hypothalamus, and more abundant in thalamic nuclei. The neuroanatomical distributions of these putative progestin signaling molecules suggest that Pgrmc1 and Pgrmc2 may play roles in neuroendocrine functions while Paqr7 and Paqr8 are more likely to regulate sensory and cognitive functions.