Neuroscience
-
Comparative Study
Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice.
The median preoptic nucleus (MnPO), part of the anteroventral third ventricular region, plays a key role in body fluid homeostasis and cardiovascular regulation. Recently, a cluster of neurons showing sleep-related c-fos immunoreactivity was found in the rat MnPO, and a subsequent electrophysiological study found that nearly 76% of rat MnPO neurons exhibit increased discharge during sleep. In a recent single unit recording study in mice, we found that sleep-active neurons are not localized in any specific region of the preoptic/basal forebrain (POA/BFB). ⋯ Only slowly discharging (<5 Hz) slow-wave sleep (SWS)/PS-selective neurons were found in the MnPO. During the transition from W to SWS, all of these SWS/PS-selective neurons fired not before, but after, sleep onset, with a gradual increase in discharge rate. In addition to its well-known homeostatic and cardiovascular functions, the MnPO might modulate the sleep-waking cycle by playing different roles in sleep/wake state regulation.
-
Circadian rhythms are physiological and behavioral oscillations that have period lengths of approximately 24 h. In mammals, circadian rhythms are driven by a master pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). These rhythms can be entrained to light:dark cycles through photic and non-photic cues. ⋯ Ex vivo data showed that the PER2::LUC peaks in SCN and peripheral tissues were closely linked to time of activity onset in both groups. Thus, this wheel restriction protocol is capable of reducing and in some cases apparently hindering photic re-entrainment of the circadian system, verifying this protocol as a mechanism for study of photic/non-photic entrainment interactions. Our results suggest that LD inversion under dim light and a wheel-restriction protocol does not induce internal desynchrony, indicating that slowing the rate of shift by limiting both entrainment inputs may induce less "jet lag".
-
The ventral hippocampus modulates anxiety-like behavior in rats, and serotonergic transmission within the hippocampus facilitates adaptation to stress. Chronic amphetamine treatment results in anxiety-like behavior in rats and reduced monoamine concentrations in the ventral hippocampus. Since reduced hippocampal serotonergic transmission in response to stress is observed in rats that display high anxiety-like behavior, anxiety states in amphetamine-treated rats may be associated with reduced stress-related serotonergic transmission in the hippocampus. ⋯ Furthermore, chronic pretreatment with amphetamine abolished the serotonin response to physiologically relevant corticosterone levels and reduced glucocorticoid receptor protein expression. Together, our results suggest that chronic amphetamine exposure reduces serotonergic neurotransmission, in part via alterations to glucocorticoid receptor-facilitation of serotonin release in the rat ventral hippocampus. Reduced serotonergic activity in the ventral hippocampus may contribute to altered stress responses and adaptive coping following repeated drug exposure.
-
The rapid detection of sensory changes is important to survival. The change-detection system should relate closely to memory since it requires the brain to separate a new stimulus from past sensory status. To clarify effects of past sensory status on processing in the human somatosensory cortex, brain responses to an abrupt change of intensity in a train of electrical pulses applied to the hand were recorded by magnetoencephalography (MEG). ⋯ The abrupt change in stimulus intensity activated the contralateral primary (cSI) and secondary somatosensory cortex (cSII). The amplitude of the cSI and cSII activity was dependent on not only the magnitude of the change in intensity but also the length of the conditioning stimulus prior to the change, suggesting that storage of prior tactile information was involved in generating these responses. The possibility that an activity of onset (with no conditioning stimulus) would be involved in the change-related activity was also discussed.