Neuroscience
-
Thiamine deficiency during embryonic or early postnatal development causes deficits in cerebellum-dependent activities including motor control and procedural memory. Here, we give a detailed description of the changes to A-type current in cultured cerebellar granule neurons exposed to thiamine deficiency in vitro. A-type current in treated neurons was reduced to 51% of that in controls. ⋯ These effects were selective because the delayed-rectifier potassium current density and kinetics were unchanged in thiamine-deficient neurons. A computational model of the cerebellar granule neuron was used to test the impact of these alterations and predicts an increase in excitability that is especially pronounced for synaptic activation. Our results suggest that the loss of A-type potassium conductance leads to hyperactivity in cerebellar granule neurons and may contribute to cell death observed in the granule layer of cerebellum during thiamine-deficiency in vivo.
-
The spontaneously epileptic rat (SER) is a double mutant (zi/zi, tm/tm) which begins to exhibit tonic convulsions and absence seizures after 6 weeks of age, and repetitive tonic seizures over time induce sclerosis-like changes in SER hippocampus with high brain-derived neurotrophic factor (BDNF) expression. Levetiracetam, which binds to synaptic vesicle protein 2A (SV2A), inhibited both tonic convulsions and absence seizures in SERs. We studied SER brains histologically and immunohistochemically after verification by electroencephalography (EEG), as SERs exhibit seizure-related alterations in the cerebral cortex and hippocampus. ⋯ The extent of low SV2A expression/distribution in SERs was particularly remarkable in the frontal (51% of control) and entorhinal cortices (47%). Lower synaptotagmin-1 expression (vs Wistar rats) was located in the frontal (31%), piriform (13%) and entorhinal (39%) cortices, and IML of the DG (38%) in SER. Focal low distribution of synaptotagmin-1 accompanying low SV2A expression may contribute to epileptogenesis and seizure propagation in SER.
-
Maternal thyroid hormones (THs) are important in early brain development long before the onset of embryonic TH secretion, but information about the regulation of TH availability in the brain at these early stages is still limited. We therefore investigated in detail the mRNA distribution pattern of the TH activating type 2 and inactivating type 3 deiodinases (D2 and D3) and the TH transporters, organic anion transporting polypeptide 1c1 (Oatp1c1) and monocarboxylate transporter 8 (Mct8), in chicken embryonic brain as well as in retina and inner ear from day 3 to day 10 of development. Oatp1c1, Mct8 and D3 are expressed in the choroid plexus and its precursors allowing selective uptake of THs at the blood-cerebrospinal fluid-barrier with subsequent inactivation of excess hormone. ⋯ Mct8 is widely expressed in gray matter throughout the brain. This is the first comprehensive study on the dynamic distribution pattern of TH-transporters and deiodinases at stages of embryonic brain development when only maternal THs are available. It provides the essential background for further research aimed at understanding early developmental processes depending on maternal THs.
-
Systemic injection of lipopolysaccharide (LPS) induces a robust immune response as well as thermal and mechanical hyperalgesia. Spinal and peripheral glial cells have been implicated as important mediators in this hyperalgesia but the specific contributions of microglia versus astrocytes are not entirely clear. To better define these mechanisms, this study examined the febrile response, nociceptive sensitivity, glial cell reactivity and cytokine production in the dorsal root ganglion (DRG) and spinal cord in rats following systemic treatment with LPS and the effects of minocycline in countering these responses. ⋯ Minocycline suppressed all LPS-induced behavioral effects but not the febrile response. Moreover, minocycline prevented LPS-induced microglia/macrophage activation and cytokine responses in spinal cord and DRG, but did not affect the activation of astrocytes/satellite cells. These data demonstrate that LPS-induced changes in nociceptive sensitivity are likely mediated by activation of microglial cells and/or macrophages in the spinal cord and DRG.
-
Valproic acid (VPA) is a short-chain branched fatty acid with anti-inflammatory, neuro-protective and axon remodeling effects. Here we have studied effects of VPA in gpMBP(68-84)-induced experimental autoimmune encephalomyelitis (EAE). Both preventive (from Day 0 to Day 18) and therapeutic (from Day 7 to Day 18 or from Day 9 to Day 19) VPA (500 mg/kg, intra-gastric) administration to EAE rats once daily greatly reduced the severity and duration of EAE, and suppressed mRNA levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-17, matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS) and transcription factor T-bet, but increased levels of IL-4 mRNA in EAE spinal cords. ⋯ VPA treatment altered the cytokine milieu of lymph nodes, modulating the Th profile from Th1 and Th17 to a profile of Th2 and regulatory T cells. In addition, in vitro study showed that VPA inhibited non-specific lymphocyte proliferation in a dose-dependent manner. In summary, our data demonstrated that VPA could suppress systemic and local inflammation to improve outcome of EAE, suggesting that VPA might be a candidate for treatment of multiple sclerosis.