Neuroscience
-
Little is known about the projections from the orofacial areas of the secondary somatosensory cortex (S2) to the pons and medulla including the second-order somatosensory neuron pools. To address this in rats, we first examined the distribution of S2 neurons projecting to the trigeminal principal nucleus (Vp) or oral subnucleus (Vo) of the trigeminal sensory nuclear complex (TSNC) after injections of a retrograde tracer, Fluorogold (FG), into five regions in the Vp/Vo which were responsive to stimulation of trigeminal nerves innervating the orofacial tissues. A large number of FG-labeled neurons were found with a somatotopic arrangement in the dorsal areas of S2 (orofacial S2 area). ⋯ The projections to the TSNC showed somatotopic arrangements in dorsoventral, superficial-deep and rostrocaudal directions. The somatotopic arrangements in the Vp/Vo closely matched those of the electrophysiologically defined central projection sites of the orofacial trigeminal afferents in the TSNC. The present results suggest that the orofacial S2 projects selectively to certain rostrocaudal levels of the contralateral TSNC, and the projections may allow the orofacial S2 to accurately modulate orofacial somatosensory transmission to higher brain centers including the orofacial S2 itself.
-
The medial amygdaloid nucleus (MeA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the MeA of unanesthetized rats caused pressor and bradycardiac responses, which were mediated by acute vasopressin release into the systemic circulation. ⋯ Pressor and bradycardiac responses to the microinjection of NA (27 nmol/100 nL) into the MeA were blocked by pretreatment of either the PVN or the SON with cobalt chloride (CoCl(2), 1 mM/100 nL), thus indicating that both hypothalamic nuclei mediate the cardiovascular responses evoked by microinjection of NA into the MeA. Our results suggest that the pressor and bradycardiac response caused by the microinjection of NA into the MeA is mediated by magnocellular neurons in both the PVN and SON.
-
Spinal cord injury (SCI) is a debilitating clinical condition, characterized by a complex of neurological dysfunctions. It has been shown in rats that the acute administration of recombinant human erythropoietin (rhEPO) following a contusive SCI improves the recovery of hindlimb motor function, as measured with the locomotor BBB (Basso, Beattie, Bresnahan) scale. This scale evaluates overall locomotor activity, without testing whether the rhEPO-induced motor recovery is due to a parallel recovery of sensory and/or motor pathways. ⋯ In rhEPO-treated animals results show a better general improvement both in sensory and motor transmission through spared spinal pathways, supposedly via the reticulo-spinal system, with respect to saline controls. This improvement is most prominent at relatively early times. Overall these features show a parallel time course to the changes observed in BBB score, suggesting that EPO-mediated spared spinal cord pathways might contribute to the improvement in transmission which, in turn, might be responsible for the recovery of locomotor function.
-
Diabetic retinopathy and diabetic encephalopathy are two common complications of diabetes mellitus. The impairment of glutamatergic neurotransmission in the retina and hippocampus has been suggested to be involved in the pathogenesis of these diabetic complications. In this study, we investigated the effect of elevated glucose concentration and diabetes on the protein content and surface expression of AMPA receptor subunits in the rat retina and hippocampus. ⋯ Also, no consistent changes were detected in the levels of GluA1, GluA2 or GluA4 in the hippocampus of diabetic rats. We demonstrate that elevated glucose concentration induces early changes in AMPA receptor subunits, mainly in GluA2 subunit, in retinal neural cells. Conversely, hippocampal neurons seem to remain unaffected by elevated glucose concentration, concerning the expression of AMPA receptors, suggesting that AMPA receptors are more susceptible to the stress caused by elevated glucose concentration in retinal cells than in hippocampal neurons.