Neuroscience
-
The Ts65Dn (TS) mouse model of Down syndrome (DS) displays a number of behavioral, neuromorphological and neurochemical phenotypes of the syndrome. Altered GABAergic transmission appears to contribute to the mechanisms responsible for the cognitive impairments in TS mice. Increased functional expression of the trisomic gene encoding an inwardly rectifying potassium channel, subfamily J, member 6 (KCNJ6) has been reported in DS and TS mice, along with the consequent impairment in GAB Aergic function. ⋯ Also, ETH and GAB did not induce anxiety in the open field or plus maze tests, did not alter performance in the Morris water maze, and did not affect cued - or context - fear conditioning. Our results thus suggest that KCNJ6 may not be a promising drug target candidate in DS. As a corollary, they also show that long-term use of ETH and GAB is devoid of adverse behavioral and cognitive effects.
-
Randomized Controlled Trial
Influence of the amount of use on hand motor cortex representation: effects of immobilization and motor training.
Converging evidence from animal and human studies has revealed that increased or decreased use of an extremity can lead to changes in cortical representation of the involved muscles. However, opposite experimental manipulations such as immobilization and motor training have sometimes been associated with similar cortical changes. Therefore, the behavioral relevance of these changes remains unclear. ⋯ No change was found for other TMS variables (motor thresholds or map location/volume/area) in either condition. In conclusion, our results indicate that a 4-day decrease, but not increase, in the amount of use of nondominant hand muscles is sufficient to induce a change in corticospinal excitability. The lack of a training effect might be explained by the use of an unspecific task (that is nevertheless representative of "real-life" training situations) and/or by insufficient duration/intensity to induce long-lasting changes.
-
Cortical surface area has been largely overlooked in genetic studies of human brain morphometry, even though phylogenetic differences in cortical surface area between individuals are known to be influenced by differences in genetic endowment. In this study, we examined the relative contribution of genetic and environmental influences on cortical surface areas in both the native and stereotaxic spaces for a cohort of homogeneously-aged healthy pediatric twins. ⋯ This is reasonable since whole brain volume is also known to be heritable itself and so removing that component of areal variance due to overall brain size via stereotaxic transformation will reduce the genetic proportion. These findings further suggest that cortical surface areas involved in cognitive, attention and emotional processing, as well as in creating and retaining of long-term memories are likely to be more useful for examining the relationship between genotype and behavioral phenotypes.
-
According to social psychology models of adult attachment, a fundamental dimension of attachment is anxiety. Individuals who are high in attachment anxiety are motivated to achieve intimacy in relationships, but are mistrustful of others and their availability. Behavioral research has shown that anxiously attached persons are vigilant for emotional facial expression, but the neural substrates underlying this perceptual sensitivity remain largely unknown. ⋯ Controlling for these variables, attachment-related anxiety was positively related to responses in left inferior, middle, and medial prefrontal areas, globus pallidus, claustrum, and right cerebellum to masked happy facial expression. Attachment anxiety was not found to be associated with brain activation due to masked sad faces. Our findings suggest that anxiously attached adults are automatically more responsive to positive approach-related facial expression in brain areas that are involved in the perception of facial emotion, facial mimicry, or the assessment of affective value and social distance.
-
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Previous research has demonstrated several trends in human tissue that, undoubtedly, contribute to the development and progression of TLE. In this study we examined resected human hippocampus tissue for a variety of changes including gliosis that might contribute to the development and presentation of TLE. ⋯ We noted increased expression of the α1c subunit comprising class C L-type Ca(2+) channels and calpain expression in these tissues, suggesting that these subunits might have an integral role in TLE pathogenesis. These changes found in the resected tissue suggest that they may contribute to TLE and that the kainic acid receptor (KAR) and deregulation of GluR2 receptor may play an important role in TLE development and disease course. This study identifies alterations in number of commonly studied molecular targets associated with astrogliosis, cellular hypertrophy, water homeostasis, inflammation, and modulation of excitatory neurotransmission in hippocampal tissues from TLE patients.