Neuroscience
-
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. ⋯ Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder.
-
Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction, deficits in verbal and non-verbal communication, and repetitive behavior and restricted interests. Emerging evidence suggests that aberrant neuroimmune responses may contribute to phenotypic deficits and could be appropriate targets for pharmacologic intervention. ⋯ In this review, a possible pathological mechanism behind autism is proposed, which suggests that IL-6 elevation in the brain, caused by the activated glia and/or maternal immune activation, could be an important inflammatory cytokine response involved in the mediation of autism-like behaviors through impairments of neuroanatomical structures and neuronal plasticity. Further studies to investigate whether IL-6 could be used for therapeutic interventions in autism would be of great significance.
-
In recent years, both major depression and antidepressant therapy have been linked to adult hippocampal neurogenesis. The hippocampus is not a homogeneous brain area, and a converging body of evidence indicates a functional dissociation along its septo-temporal axis, the dorsal part being involved more in learning/memory and spatial navigation, while the ventral sub-region is linked more to emotional behavior and regulation of the neuroendocrine stress axis. Research has therefore been conducted in an attempt to relate effects of models of depression and of antidepressant therapies to adult neurogenesis along the septo-temporal axis of the hippocampus. ⋯ Some recently introduced clinical compounds (e.g., agomelatine) or putative antidepressants have a specific action on the ventral sub-region, indicating that an action restricted to this part of the brain may be sufficient to achieve remission. Finally, non-pharmacological manipulations that are also endowed with antidepressant effects, such as environmental enrichment or physical exercise, also act on both subdivisions, although some studies pointed to specificity of dorsal neurogenesis. The different treatments, acting either on the dorsal or on the ventral sub-regions, could promote recovery by improving either ventral- or dorsal-related functions, both contributing in a different way to treatment efficacy.
-
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. ⋯ Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n=152) and α7nAChR (n=561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms.
-
The medial perforant path (MPP) and lateral perforant path (LPP) inputs to the hippocampal dentate gyrus form two distinct laminar inputs onto the middle and distal aspects of granule cell dendrites. Previous evidence indicated that paired stimuli reliably produced paired-pulse depression (PPD) in the MPP and paired-pulse facilitation (PPF) in the LPP. Despite this, several years of practical experience in our laboratory questioned the utility of using paired-pulse administration to reliably differentiate the MPP and LPP in vitro. ⋯ PPD was more evident in whole cell voltage clamp recordings but nonetheless was not completely diagnostic as PPD was occasionally observed with LPP stimulation as well. We found the MPP and LPP could be reliably identified using conventional microscopy with hippocampal slices, and that they could be distinguished through the analysis of evoked waveform kinetics. This work refines our knowledge of electrophysiological differences between MPP and LPP projections and will help to facilitate the selective activation of these pathways.