Neuroscience
-
Accumulating evidence suggests that the metabolism of l-arginine, a metabolically versatile amino acid, is critically involved in the aging process. The present study compared the activity and protein expression of nitric oxide synthase (NOS) and arginase, and the levels of l-arginine and its eight down-stream metabolites in the brain stem (pons and medulla) and the cervical spinal cord in 3- (young) and 22- (aged) month-old male Sprague-Dawley rats. Total NOS activity was significantly reduced with age in the spinal cord (but not brain stem), and there were no age-related changes in arginase activity in both regions. ⋯ Although the absolute concentrations of l-arginine and six metabolites were significantly different between the brain stem and spinal cord in both age groups, there were similar clusters between l-arginine and its three main metabolites (l-citrulline, l-ornithine and agmatine) in both regions, which changed as a function of age. These findings, for the first time, demonstrate the regional variations and age-related changes in arginine metabolism in the rat brain stem and spinal cord. Future research is required to understand the functional significance of these changes and the underlying mechanisms.
-
Although the wake-promoting drug modafinil has been shown to bind quite exclusively to the dopamine transporter (DAT), its action in the brain has been thought to be partially independent from the facilitation of the dopaminergic signals. Here we used electrophysiological and amperometric techniques to investigate the effects of modafinil on the dopaminergic neurons of the substantia nigra pars compacta (SNpc) and on the synaptic overflow of dopamine in the dorsal striatum from the sliced tissue of wild-type and cocaine-insensitive genetically modified mice (DAT-CI). Moreover, we examined the consequences of modafinil administration on the locomotor behavior of wild-type and DAT-CI mice. ⋯ On the other hand, neither the electrophysiological nor the behavioral effects of modafinil were detected in DAT-CI animals. These results demonstrate that modafinil potentiates brain dopaminergic signals via DAT inhibition by acting at the same binding site of cocaine. Therefore, this mechanism of action explains most of the pharmacological properties of this compound in the clinical setting.
-
Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. ⋯ However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory.
-
It has been shown that the X-chromosome-linked neural cell adhesion molecule L1 plays a beneficial role in regeneration after spinal cord injury (SCI) in young adult rodents when applied in various molecular and cellular forms. In an attempt to further characterize the multiple functions of L1 after severe SCI we analyzed locomotor functions and measured axonal regrowth/sprouting and sparing, glial scarring, and synaptic remodeling at 6 weeks after severe spinal cord compression injury at the T7-9 levels of L1-deficient mice (L1-/y) and their wild-type (L1+/y) littermates, as well as mice that overexpress L1 under the control of the neuron-specific Thy-1 promoter (L1tg) and their wild-type littermates (L1+/+). No differences were found in the locomotor scale score and single frame motion analysis between L1-/y and L1+/y mice during 6 weeks after SCI, most likely due to the very low expression of L1 in the adult spinal cord of wild-type mice. ⋯ Additionally, no difference between L1tg and L1+/+ mice was detectable in dieback of corticospinal tract axons. Neuronal L1 overexpression did not influence the size of the glial fibrillary acidic protein-immunoreactive astrocytic scar 6 weeks after injury. We conclude that neuronal overexpression of L1 improves functional recovery from SCI by increasing catecholaminergic axonal regrowth/sprouting and/or sparing of severed axons without affecting the glial scar size.
-
Although hippocampal sclerosis is frequently identified as a possible epileptic focus in patients with temporal lobe epilepsy, neuronal loss has also been observed in additional structures, including areas outside the temporal lobe. The claim from several researchers using animal models of acquired epilepsy that the immature brain can develop epilepsy without evidence of hippocampal neuronal death raises the possibility that neuronal death in some of these other regions may also be important for epileptogenesis. The present study used the lithium pilocarpine model of acquired epilepsy in immature animals to assess which structures outside the hippocampus are injured acutely after status epilepticus. ⋯ The most prominent staining was seen in the thalamus (mediodorsal, paratenial, reuniens, and ventral lateral geniculate nuclei), amygdala (ventral lateral, posteromedial, and basomedial nuclei), ventral premammillary nuclei of hypothalamus, and paralimbic cortices (perirhinal, entorhinal, and piriform) as well as parasubiculum and dorsal endopiriform nuclei. These results demonstrate that lithium pilocarpine-induced status epilepticus in the immature rat brain consistently results in neuronal injury in several distinct areas outside of the hippocampus. Many of these regions are similar to areas damaged in patients with temporal lobe epilepsy, thus suggesting a possible role in epileptogenesis.