Neuroscience
-
Nitric oxide (NO) has been implicated in the regulation of sleep. The perifornical-lateral hypothalamic area (PF-LHA) is a key wake-promoting region and contains neurons that are active during behavioral or cortical activation. Recently, we found higher levels of NO metabolites (NOx), an indirect measure of NO levels, in the PF-LHA during prolonged waking (SD). ⋯ NO levels increased during 3h of SD as compared to undisturbed control (0.58±0.04μM vs. 0.47±0.01μM; p<0.05). The findings indicate that in the PF-LHA, NO is produced during behavioral or cortical activation. Since elevated levels of NO inhibits most of the PF-LHA neurons that are active during cortical activation, these findings support a hypothesis that NO produced in conjunction with the activation of PF-LHA neurons during waking/SD, inhibits the same neuronal population to promote sleep.
-
The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. ⋯ Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development.
-
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. ⋯ Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
-
Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. ⋯ Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study.