Neuroscience
-
Microglia have been implicated in disease progression for several age-related brain disorders. However, while microglia's contribution to the progression of these disorders is accepted, the effect of aging on their endogenous cellular characteristics has received limited attention. In fact, a comprehensive study of how the structure and function of microglia changes as a function of developmental age has yet to be performed. ⋯ Interestingly, 13-15month-old microglia exhibited similar activation profiles to Neo microglia, whereas microglia from younger adults and embryos were activated less by ATP. Our data also identify age-dependent differences in purinergic receptor subtype expression that contribute to the regulation of neuronal survival. Combined, our data demonstrate that microglial activation and purinergic receptor profiles vary non-linearly with developmental age, a potentially important finding for studies examining the role of microglia in neurodegenerative disorders.
-
Neurogenesis continues to occur in restricted regions of the brain throughout adulthood and can be modulated by dietary factors. Liquid or "soft" diets are commonly used for the administration of drugs in experimental models of disease, making it critical to determine whether dietary composition itself can affect neurogenesis. In this study Sprague-Dawley rats were fed either a liquid or a solid diet of identical composition from weaning until young adulthood. ⋯ The method of feeding did not alter the basal function of the hypothalamic-pituitary-adrenal (HPA) axis in these animals, as no changes in circulating levels of corticosterone (CORT) were detected between liquid and solid diet-fed groups. There was also a significant reduction in cellular proliferation in the hypothalamus of liquid diet-fed rats, a brain region known to be involved in feeding-related behaviors. These findings indicate that liquid diets themselves can directly impact rates of cellular proliferation, but this does not seem to impact levels of overall neurogenesis in the adult brain.
-
We have previously shown that anti-hyperalgesic effects of cannabinoid agonists under inflammatory condition are much greater in male than female, and that inflammatory cytokines upregulate cannabinoid receptor type 1 (CB1) expression in male, but not female, trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we investigated the mechanisms underlying the testosterone-mediated regulation of peripheral CB1 expression. We hypothesized that testosterone upregulates CB1 through transcriptional modulation by androgen receptor (AR). ⋯ Furthermore, luciferase reporter assay revealed that AR activated the CB1 gene in response to testosterone or dihydrotestosterone treatment. These experiments provided compelling evidence that testosterone regulates CB1 gene transcription in TG through AR following cytokine stimulation. These results should provide mechanistic bases for understanding cytokine-hormone-neuron interactions in peripheral cannabinoid systems, and have important clinical implications for pain patients in whom testosterone level is naturally low, gradually declining or pharmacologically compromised.
-
Here we investigated whether changes in neurogenesis and brain-derived neurotrophic factor (BDNF) expression are possible mechanisms involved in the depression-like symptom during the withdrawal/abstinence period after chronic binge-pattern alcohol consumption given the limited number of studies addressing the link between these factors in the adolescent brain. Forty-seven male Sprague-Dawley rats were used in the study and the experimental protocol started when rats were 25-days old. Rats were assigned to either: (a) ethanol or (b) control group. ⋯ Our data showed that: (1) self-administration of alcohol in a binge-like pattern causes inebriation as defined by the National Institute on Alcohol Abuse and Alcoholism and this pattern of alcohol exposure is associated with the development of a depression-like symptom; (2) no significant difference in blood alcohol levels between the two ethanol groups; and (3) chronic binge drinking resulted in the development of a depressive phenotype, decreased survival and neuronal differentiation of neural progenitor cells in the hippocampus, and decreased BDNF effect during the withdrawal period. But the most important finding in our study is that augmenting BDNF actions through the use of tyrosine kinase B (TrkB, a BDNF receptor) agonist restored neurogenesis and abolished the alcohol-induced anhedonia and despair behaviors seen during the withdrawal/abstinence period. Our results suggest that BDNF might be a molecule that can be targeted for interventions in alcoholism-depression co-incidence.
-
Using structural magnetic resonance imaging in a clinical scanner at 3.0T, we describe results showing that following 12weeks on a diet of 2% cholesterol, rabbits experience a significant increase in the volume of the third ventricle compared to rabbits on a diet of 0% cholesterol. Using time-of-flight magnetic resonance angiography, we find cholesterol-fed rabbits also experience a decrease in the diameter of a number of cerebral blood vessels including the basilar, posterior communicating, and internal carotid arteries. Taken together, these data confirm that, despite the inability of dietary cholesterol to cross the blood-brain barrier, it does significantly enlarge ventricular volume and decrease cerebrovascular diameter in the rabbit - effects that are also seen in patients with Alzheimer's disease.