Neuroscience
-
Neurogenesis continues to occur in restricted regions of the brain throughout adulthood and can be modulated by dietary factors. Liquid or "soft" diets are commonly used for the administration of drugs in experimental models of disease, making it critical to determine whether dietary composition itself can affect neurogenesis. In this study Sprague-Dawley rats were fed either a liquid or a solid diet of identical composition from weaning until young adulthood. ⋯ The method of feeding did not alter the basal function of the hypothalamic-pituitary-adrenal (HPA) axis in these animals, as no changes in circulating levels of corticosterone (CORT) were detected between liquid and solid diet-fed groups. There was also a significant reduction in cellular proliferation in the hypothalamus of liquid diet-fed rats, a brain region known to be involved in feeding-related behaviors. These findings indicate that liquid diets themselves can directly impact rates of cellular proliferation, but this does not seem to impact levels of overall neurogenesis in the adult brain.
-
Exposure of mice to a brief light stimulus during their nocturnal active phase induces several simultaneous behavioral or physiological responses, including circadian rhythm phase shifts, a drop in core body temperature (Tc), suppression of locomotor activity and sleep. Each response is triggered by light, endures for a relatively fixed interval and does not require additional light for expression. The present studies address the ability of the psychostimulant drugs, methamphetamine (MA), modafinil (MOD) or caffeine (CAF), to modify the light-induced responses. ⋯ CAF acutely elevated Tc; MA acutely lowered it, but both drugs reduced Tc during the early dark (ZT12.5-ZT13). The ability of the psychostimulant drugs to block the several effects of light exposure is not the result of drug-induced hyperactivity. The results raise questions concerning the manner in which drugs, activity, sleep and Tc influence behavioral and physiological responses to light.
-
Astrocytes are plastic cells that play key roles in brain physiology and pathology, including via their glutamate transporters, excitatory amino acid transporter (EAAT)1 and EAAT2, maintaining low extracellular glutamate concentrations and protecting against excitotoxic neuronal injury. Alterations in cell surface expression of EAATs and astrocytic cytoskeleton are important for regulating transporter activity. This study employed the actions of rottlerin, to interrogate the regulation of EAAT activity, expression and localization, and interfaces with Na(+)/K(+)-ATPase and astrocytic morphology. ⋯ Removal of rottlerin rapidly elevated Na(+)/K(+)-ATPase activity beyond control levels, while co-treatment with monensin failed to stimulate the Na(+)/K(+)-ATPase. These data reveal inhibition of EAAT activity by rottlerin is not associated with loss of EAATs at the cell surface, but rather linked to cytoskeletal rearrangement, and inhibition of the Na(+)/K(+)-ATPase. Rapid recovery of Na(+)/K(+)-ATPase activity, and subsequent restoration of glutamate uptake indicates that astrocytic morphology and EAAT activity are co-regulated by a tightly coupled, homeostatic relationship between l-glutamate uptake, the electrochemical gradient and the activity of the Na(+)/K(+)-ATPase.
-
The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. ⋯ Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development.
-
Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. ⋯ This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10mg/kg, i.p., 3×) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest a novel mechanism underlying stress-triggered anxiety after METH withdrawal mediated by α4βδ GABARs.