Neuroscience
-
It was recently established that the stomach-derived ghrelin and the adipokine leptin promote learning and memory through actions within the hippocampus. Changes in the peripheral or brain levels of these peptides were described in Alzheimer's disease (AD) patients and were shown to correlate with the severity of cognitive decline. Furthermore, in vivo and in vitro studies demonstrated that leptin or ghrelin can ameliorate amyloid and tau pathologies as well as cognitive deficits. ⋯ Using primary cultured hippocampal neurons, we demonstrated that both peptides reduce AβO-induced production of superoxide and mitochondrial membrane depolarization, improving cell survival, and inhibit cell death through a receptor-dependent mechanism. Furthermore, it was shown that in AβO-treated neurons both leptin and ghrelin prevent glycogen synthase kinase 3β activation. Therefore, the evidence gathered in this study revealed that leptin and ghrelin can act as neuroprotective agents able to rescue hippocampal neurons from AβO toxicity, thus highlighting their potential therapeutic role in AD.
-
We have recently demonstrated that the ventral premammillary nucleus (PMV) plays a key role in the metabolic control of the female reproductive axis. However, whether PMV neurons modulate the reproductive neural circuitry and/or the expression of sexual behaviors has not been determined. Here, we showed that the expression of estrogen and progesterone receptors in the PMV is modulated by changing levels of sex steroids across the estrous cycle. ⋯ Notably, lesions of the PMV disrupted the physiologic fluctuations of Kiss1 and GnRH mRNA expression characteristic of the proestrus-to-estrus transition. This neurochemical imbalance may ultimately alter female reproductive behavior. Our findings suggest that the PMV is a component of the neural circuitry that modulates the physiologic fluctuations of key neuroendocrine players (i.e., Kiss1 and GnRH) in the control of the female reproductive physiology.
-
Central dopamine systems are key players in the cerebral organization of behavior and in various neurological and psychiatric diseases. We demonstrate the presence of a neurochemical feed-forward loop characterized by region-specific changes in dopamine efflux in serially connected striatal regions, providing evidence in favor of the existence of so-called spiraling striato-nigro-striatal connections. ⋯ Finally, simultaneous stimulation of dopamine D1 and D2 receptors in the shell decreased dopamine efflux in the dorsal part of the striatum. Thus, distinct striatal regions act also in series, providing a better understanding of the neural mechanisms underlying dopamine-dependent behaviors and the progression of dopamine-dependent disorders such as depression, schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction.
-
Damage from oxidative stress plays a critical role in spinal cord injury. Nuclear factor erythroid 2-related factor (Nrf-2) signaling pathway can be activated by cellular oxidative stress. Resveratrol, a plant-derived polyphenolic compound found in red wine, has antioxidant properties. ⋯ Furthermore, using immunohistochemistry and Western blot, we found that after resveratrol treatment during hypoxic injury there was a significant activation of NrF-2 and down regulation of the glial fibrillary acidic protein (GFAP) content. The results show that resveratrol treatment has neuroprotective effects on CAP, Ca(++) loading, and biochemical parameters after hypoxic injury. The neuroprotective effect is likely to be exerted by increased activation of transcription factor Nrf-2 by resveratrol along with its direct antioxidant effect to ameliorate the oxidative damage and preserve mitochondrial function.
-
Randomized Controlled Trial
Effects of COMT genotype on sensory gating and its modulation by nicotine: Differences in low and high P50 suppressors.
Elevated smoking rates seen in schizophrenia populations may be an attempt to correct neuropathologies associated with deficient nicotinic acetylcholine receptors and/or dopaminergic systems using exogenous nicotine. However, nicotine's effects on cognitive processing and sensory gating have been shown to be baseline-dependent. Evidence of a restorative effect on sensory gating deficits by nicotine-like agonists has been demonstrated, however, its underlying mechanisms in the context of dopamine dysregulation are unclear. ⋯ Using a randomized, double-blind, placebo-controlled design with 57 non-smokers, this study examined the effects of COMT genotype on sensory gating and its modulation by nicotine in low vs. high suppressors. The results were consistent with the hypothesis that increased dopamine resulting from nicotine stimulation or Met allelic activity would benefit gating in low suppressors and impair gating in high suppressors, and that this gating improvement with nicotine would be more evident in Val carriers who were low suppressors, while the gating impairment would be more evident in Met carriers who were high suppressors. These findings reaffirm the importance of baseline-dependency and suggest a subtle relationship between COMT genotype and baseline-stratified levels of sensory gating, which may help to explain the variability of cognitive abilities in schizophrenia populations.