Neuroscience
-
Intraneuronal accumulation of beta-amyloid protein (Aβ) is an early pathological change in Alzheimer's disease (AD). Recent studies demonstrate that α7 nicotinic acetylcholine receptor (α7nAChR) binds to soluble Aβ with a high affinity. In vitro and in vivo experiments also show that Aβ activates p38 MAPK and ERK1/2 signaling pathways via the α7nAChR. ⋯ Our data demonstrate that Aβ1-42 induces an α7nAChR-dependent pathway that relates to the activation of p38 MAPK and ERK1/2, resulting in internalization of Aβ1-42. Our findings suggest that α7nAChR and MAPK signaling pathways play an important role in the uptake and accumulation of Aβ1-42 in SH-SY5Y cells. Blockade of α7nAChR may have a beneficial effect by limiting intracellular accumulation of amyloid in AD brain and serves a potential therapeutic target for AD.
-
We have previously demonstrated that male rats exposed to stress during the last week of gestation present age-specific impairments of brain development. Since the organization of the fetal developing brain is subject to androgen exposure and prenatal stress was reported to disrupt perinatal testosterone surges, the aim of this research was to explore whether abnormal androgen concentrations during late gestation affects the morphology of the prefrontal cortex (PFC), hippocampus (HPC) and ventral tegmental area (VTA), three major areas that were shown to be affected by prenatal stress in our previous studies. We administered 10-mg/kg/day of the androgen receptor antagonist flutamide (4'nitro-3'-trifluoromethylsobutyranilide) or vehicle injections to pregnant rats from days 15-21 of gestation. ⋯ Brain morphological studies revealed that prenatal flutamide decreased the number of MAP2 (a microtubule-associated protein type 2, present almost exclusively in dendrites) immunoreactive neuronal processes in all evaluated brain areas, both in prepubertal and adult offspring, suggesting that prenatal androgen disruption induces long-term reductions of the dendritic arborization of several brain structures, affecting the normal connectivity between areas. Moreover, the number of tyrosine hydroxylase (TH)-immunopositive neurons in the VTA of prepubertal offspring was reduced in flutamide rats but reach normal values at adulthood. Our results demonstrate that the effects of prenatal flutamide on the offspring brain morphology resemble several prenatal stress effects suggesting that the mechanism of action of prenatal stress might be related to the impairment of the organizational role of androgens on brain development.
-
Single-cell injection with lipophilic dyes following immunocytochemistry is extremely valuable for revealing the morphology of a cell expressing a protein of interest, and is a more reliable technique for cell type classification than standard morphological techniques. This study focuses on calretinin (CR), which is used as a selective marker for distinct subpopulations of neurons in the rabbit retina. The present study used single-cell injection after immunocytochemistry to describe the density and types of CR-containing retinal ganglion cells (RGCs) in rabbit. ⋯ Our results show that 10 morphologically different types of rabbit RGCs expressed CR. CR-containing RGCs were heterogeneous in their morphology. This approach to integrate the selective expression of a particular protein with spatial patterns of dendritic arborization will lead to a better understanding of RGCs.
-
Obesity is associated with augmented peripheral inflammation and pain sensitivity in response to inflammatory stimulation, but the underlying mechanisms remain unclear. Emerging evidence has shown that activation of peroxisome proliferator-activated receptor-α (PPARα) in the central nervous system controls peripheral inflammation and pain. We hypothesized that obesity might down-regulate PPARα in the spinal cord, leading to enhanced peripheral inflammation and inflammatory hyperalgesia. ⋯ However, the increase was more pronounced in HF-fed rats and corrected by PEA. Intrathecal injection of small interfering RNA (siRNA) against PPARα in HF-fed rats completely abolished PEA effects on peripheral pain sensitivity and paw edema. These findings suggest that diet-induced obesity causes down-regulation of spinal PPARα, which facilitates the susceptibility to peripheral inflammatory challenge by increasing inflammatory response in the spinal cord, contributing to augmented peripheral inflammation and inflammatory hyperalgesia in obesity.
-
Low intensity static magnetic fields (SMFs) interact with various biological tissues including the CNS, thereby affecting key biological processes such as gene expression, cell proliferation and differentiation, as well as apoptosis. Previous studies describing the effect of SMFs on apoptotic cell death in several non-neuronal cell lines, emphasize the importance of such a potential modulation in the case of neurodegenerative disorders, where apoptosis constitutes a major route via which neurons degenerate and die. In this study, we examine the effect of SMFs on neuronal survival in primary cortical and hippocampal neurons that constitute a suitable experimental system for modeling the neurodegenerative state in vitro. ⋯ Using the L-type voltage-gated Ca(2+) channel inhibitor nifedipine, which is selective to Ca(2+) influx through Cav1.2, we found that the anti-apoptotic effect of SMFs was mediated by Ca(2+) influx through these channels. Our findings demonstrating altered Ca(2+)-influx in response to thapsigargin stimulation in SMF-exposed cortical neurons, along with enhanced inhibition of KCl-induced Ca(2+)-influx through Cav1.2 channels and enhanced expression of Cav1.2 and Cav1.3 channels, allude to the involvement of voltage- and store-operated Ca(2+) channels in various aspects of the protective effect exerted by SMFs. These findings show the potential susceptibility of the CNS to weak SMF exposure and have implications for the design of novel strategies for the treatment and/or prevention of neurodegenerative diseases.