Neuroscience
-
Single-cell injection with lipophilic dyes following immunocytochemistry is extremely valuable for revealing the morphology of a cell expressing a protein of interest, and is a more reliable technique for cell type classification than standard morphological techniques. This study focuses on calretinin (CR), which is used as a selective marker for distinct subpopulations of neurons in the rabbit retina. The present study used single-cell injection after immunocytochemistry to describe the density and types of CR-containing retinal ganglion cells (RGCs) in rabbit. ⋯ Our results show that 10 morphologically different types of rabbit RGCs expressed CR. CR-containing RGCs were heterogeneous in their morphology. This approach to integrate the selective expression of a particular protein with spatial patterns of dendritic arborization will lead to a better understanding of RGCs.
-
We used a reporter mouse line in which green fluorescent protein (GFP) was inserted into the orexin-1 receptor (OX1) locus to systematically map the neuroanatomical distribution of the OX1 receptor in the mouse brainstem and pons. Here, we show that the OX1 receptor is expressed in a select subset of medullary and pontine nuclei. In the medulla, we observed OX1-GFP expression in the cuneate, gracile, dorsal motor nucleus of the vagus (10N), nucleus of the solitary tract and medullary raphe areas. ⋯ Double-staining with tyrosine hydroxylase revealed extensive co-expression in the LC, DRN and the lateral paragigantocellularis cell group in the ventral medulla. Our findings faithfully recapitulate the findings of OX1 mRNA expression previously reported. This is the first study to systematically map the neuroanatomical distribution of OX1 receptors within the mouse hindbrain and suggest that this OX1-GFP transgenic reporter mouse line might be a useful tool with which to study the neuroanatomy and physiology of OX1 receptor-expressing cells.
-
Accumulation of hypoxia-inducible transcription factors (HIFs) by prolyl-4-hydroxylase inhibitors (PHI) has been suggested to induce neuroprotection in the ischemic rodent brain. We aimed to investigate in vivo effects of a novel PHI on HIF-regulated neurotrophic and pro-apoptotic factors in the developing normoxic and hypoxic mouse brain. ⋯ PHI treatment modulates neurotrophic factors known to be crucially involved in hypoxia-induced cerebral adaptive mechanisms as well as early brain maturation. Pre-treatment with FG-4497 seems to protect the developing brain from hypoxia-induced apoptosis. Present observations provide basic information for further evaluation of neuroprotective properties of PHI treatment in hypoxic injury of the developing brain. However, potential effects on maturational processes need special attention in experimental research targeting HIF-dependent neuroprotective interventions during the very early stage of brain development.
-
Alzheimer's disease (AD) is the most common and devastating neurodegenerative disease. The etiology of AD has yet to be fully understood, and common treatments remain largely non-efficacious. The amyloid hypothesis posits that extracellular amyloid-β (Aβ) deposits are the fundamental etiological factor of the disease. ⋯ Chronic exposure to (PhSe)2 attenuated oxidative stress induced by Aβ1-42, with concomitant recovery of associative learning memory in C. elegans. Additionally, (PhSe)2 decreased Aβ1-42 transgene expression, suppressed Aβ1-42 peptide, and downregulated hsp-16.2 by reducing the need for this chaperone under Aβ1-42-induced toxicity. These observations suggest that (PhSe)2 plays an important role in protecting against oxidative stress-induced toxicity, thus representing a promising pharmaceutical modality that attenuates Aβ1-42 expression.
-
Obesity is associated with augmented peripheral inflammation and pain sensitivity in response to inflammatory stimulation, but the underlying mechanisms remain unclear. Emerging evidence has shown that activation of peroxisome proliferator-activated receptor-α (PPARα) in the central nervous system controls peripheral inflammation and pain. We hypothesized that obesity might down-regulate PPARα in the spinal cord, leading to enhanced peripheral inflammation and inflammatory hyperalgesia. ⋯ However, the increase was more pronounced in HF-fed rats and corrected by PEA. Intrathecal injection of small interfering RNA (siRNA) against PPARα in HF-fed rats completely abolished PEA effects on peripheral pain sensitivity and paw edema. These findings suggest that diet-induced obesity causes down-regulation of spinal PPARα, which facilitates the susceptibility to peripheral inflammatory challenge by increasing inflammatory response in the spinal cord, contributing to augmented peripheral inflammation and inflammatory hyperalgesia in obesity.