Neuroscience
-
The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. ⋯ Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us - and policy deciders - why Science cannot be programed, requiring time, and risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on sideways, never on highways.
-
Epilepsy is a highly common chronic neurological disorder. Although symptomatic treatment is available, 30-40% of epilepsy patients still remain resistant to anti-epileptic drugs. The primary identification and extensive characterization of the pathological substrates underlying epilepsy would facilitate the development of novel treatments, including disease-modifying and anti-epileptogenic therapies. ⋯ Secondly, we review the available approaches for molecular imaging of brain inflammation in general and finally present the current research on the imaging of brain inflammation in patients and experimental models of epilepsy. The current imaging toolbox is limited by the range of neuroinflammatory targets, which can be visualized at present, and in addition, the often indirect approaches used. We believe that research in this field will further advance as highly specific ligands, and producible and practical imaging approaches will become available.
-
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. ⋯ I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
-
Over recent years evidence from animal studies strongly suggests that a decrease in local inhibitory signaling is necessary for synaptic plasticity to occur. However, the role of GABAergic modulation in human motor plasticity is less well understood. Here, we summarize the techniques available to quantify GABA in humans, before reviewing the existing evidence for the role of inhibitory signaling in human motor plasticity. We discuss a number of important outstanding questions that remain before the role of GABAergic modulation in long-term plasticity in humans, such as that underpinning recovery after stroke, can be established.
-
Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first-generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. ⋯ GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease.