Neuroscience
-
Activation of the orexin (OX)-ergic neurons in the perifornical (PeF) area has been reported to induce waking and reduce rapid eye movement sleep (REMS). The activities of OX-ergic neurons are maximum during active waking and they progressively reduce during non-REMS (NREMS) and REMS. Apparently, the locus coeruleus (LC) neurons also behave in a comparable manner as that of the OX-ergic neurons particularly in relation to waking and REMS. ⋯ Simultaneous application of OX-receptor1 (OX1R) antagonist bilaterally into the LC prevented PeF stimulation-induced REMS suppression. Also, the effect of electrical stimulation of the PeF was long lasting as compared to that of the glutamate stimulation. Further, sustained electrical stimulation significantly decreased both REMS duration as well as REMS frequency, while glutamate stimulation decreased REMS duration only.
-
The formation of scar tissue following nerve injury has been shown to adversely affect nerve regeneration and evidence suggests that mannose-6-phosphate (M6P), a potential scar reducing agent that affects transforming growth factor (TGF)-β activation, may enhance nerve regeneration. In this study we utilized thy-1-YFP-H mice - a transgenic strain expressing yellow fluorescent protein (YFP) within a subset of axons - to enable visual analysis of axons regenerating through a nerve graft. Using this strain of mouse we have developed analysis techniques to visualize and quantify regeneration of individual axons across the injury site following the application of either M6P or vehicle to the site of nerve injury. ⋯ The average length of axons regenerating across the initial graft entry was significantly shorter in M6P- than in vehicle-treated grafts, indicating that they encountered less impedance. Application of M6P appears to reduce the disruption of regenerating axons and may therefore facilitate quicker recovery; this is likely to result from altered scar tissue formation in M6P grafts in the early stages of recovery. This study also establishes the usefulness of our methods of analysis using the thy-1-YFP-H mouse strain to visualize and quantify regeneration at the level of the individual axon.
-
Vitamin D deficiency is associated with increased susceptibility to inflammatory arthritis. Sensory and sympathetic synovial nerves are critical to the development of inflammatory arthritis and spontaneously degenerate in the early phases of disease. These nerves contain vitamin D receptors and vitamin D influences nerve growth and neurotrophin expression. ⋯ In vitamin D-deficient rats, there were significant reductions in sensory nerves in the intima and sympathetic nerves in the subintima. While there was no significant change in NGF-immunoreactivity, the number of neurturin-expressing mast cells was significantly reduced in the intima, suggesting that intimal reductions in sensory nerves may be related to reductions in neurturin. Vitamin D deficiency therefore may increase susceptibility to inflammatory arthritis by depleting sensory and sympathetic synovial nerves as a result of reduced synovial neurotrophin content.
-
Hearing loss related to aging is the most common sensory disorder among elderly individuals. Macrophage migration inhibitory factor (MIF) is a multi-functional molecule. The aim of this study was to identify the role of MIF in the inner ear. ⋯ MIF was strongly expressed in the mouse inner ear. Older MIF(-/-) mice showed accelerated age-related hearing loss and morphological inner ear abnormalities. These findings suggest that MIF plays an important role in the inner ear of mice.
-
Interaction between pericytes and endothelial cells via platelet-derived growth factor B (PDGF-B) signaling is critical for the development of the retinal microvasculature. The PDGF-B retention motif controls the spatial distribution range of the growth factor in the vicinity of its producing endothelial cells allowing its recognition by PDGF receptor beta-(PDGFR-β)-carrying pericytes; this promotes recruitment of pericytes to the vascular basement membrane. Impairment of the PDGF-B signaling mechanism causes development of vascular abnormalities, and in the retina this consequently leads to defects in the neurological circuitry. ⋯ Disorganization and dendrite remodeling of rod bipolar cells also added to the diminished neural and synaptic integrity. Moreover, in response to retinal injuries, Müller and microglial cells were observed to be in the reactive phenotype from P15 and onward. Such a sequence of events indicates that the pdgf-b(ret/ret) mouse model displays a short time frame between P10 and P15, during which the retina shifts to a retinopathic phase by the development of prominently altered morphological features.