Neuroscience
-
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. ⋯ Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
-
N-methyl-D-aspartate receptors (NMDA-Rs) are located at each synapse in the lower auditory pathway of mammals and avians. Characterized by a slow and long-lasting excitatory response upon glutamate activation, their existence in a sensory system biologically engineered for speed and precision seems counterintuitive. In this review we consider the diverse functions of NMDA-Rs. ⋯ Their biophysical properties also contribute to synaptic dynamics resembling long-term plasticity. At mature synapses they support reliable auditory processing by increasing the probability of action potential generation, regulating first-spike latency, and maintaining reliable action potential firing. Thus, NMDA-R functions in the lower auditory pathway are diverse, contributing to synaptic development, plasticity, temporal processing, and diseases.
-
Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. ⋯ Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system.
-
Aquaporin 1 (AQP1) is a member of a family of small, integral membrane water-transporting proteins, which facilitate water movement across cell membranes in response to osmotic gradients. Several papers have studied the expression and function of the AQPs in the central nervous system. However, little is known about the AQPs in the peripheral nervous system (PNS). ⋯ At the nodes of Ranvier, AQP1 co-localizes with actin in the paranodal regions of the nerve. Therefore, AQP1 might play an important role in myelin homeostasis maintaining the thermodynamic equilibrium across the plasma membrane in myelinated axons during electrical activity. Also the expression of AQP1 in non-myelinating Schwann cells supports the involvement of AQP1 in pain perception.
-
The timing of thyroxine (T4) replacement treatment in congenital hypothyroidism (CH) has been suggested to be important for optimizing cognitive recovery in humans; however this has not been fully established using modern animal models of CH. Consequently, the current studies investigated the ameliorating effects of postnatal T4 treatment on neuropathology and behavior in CH rats. Rat dams were administered methimazole to produce CH offspring, then brain tissue from male CH pups was analyzed to determine the effects of postnatal (P3, P7, P14 and P21) T4 treatment on hippocampal dendritic branching and the expression of nerve growth factor (NGF). ⋯ Induction of CH did not affect the acquisition of simple operant response rules but had a significant effect on the acquisition of complex operant rules subsequently imposed. Furthermore, T4 treatment initiated at P3 protected learning deficits seen following the imposition of complex operant response rules. These findings indicate T4 treatment initiated at P7 is sufficient for the protection of hippocampal NGF expression and dendritic branching but for the protection of complex behavioral abilities T4 treatment is necessary prior to or approximating P3.