Neuroscience
-
Mammalian target of rapamycin (mTOR) is a serine-threonine protein kinase that controls protein synthesis in the nervous system. Here, we characterized the role of protein synthesis regulation due to mTOR signaling in rat dorsal root ganglion (DRG) following plantar incision. ⋯ Vesicular glutamate transporter 2 (VGLUT2) expression was increased after the plantar incision, which was inhibited by rapamycin. These results demonstrated that tissue injury induces phosphorylation of mTOR and increased protein level of VGLUT2 in the DRG neurons. mTOR phosphorylation involves in maintenance of injury-induced thermal hypersensitivity.
-
Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on G protein-coupled receptors: the specific PAC1 and VPAC1/VPAC2 receptors. PACAP6-38 was described as a potent PAC1/VPAC2 antagonist in several models, but recent studies reported its agonistic behaviors proposing novel receptorial mechanisms. Since PACAP in migraine is an important research tool, we investigated the effect of PACAP and its peptide fragments on trigeminal primary sensory neurons. ⋯ On the specific receptor-expressing cell lines the antagonists inhibited the stimulating actions of the respective agonists, but had no effects by themselves. PACAP6-38, M65 and VIP6-28, which were described as antagonists in numerous studies in several model systems, act as agonists on TRG primary sensory neurons. Currently unknown receptors or splice variants linked to distinct signal transduction pathways might explain these differences.
-
Sleep is strongly implicated in learning, especially in the reprocessing of recently acquired memory. Children with intellectual disability (ID) tend to have sleep-wake disturbances, which may contribute to the pathophysiology of the disease. Given that sleep is partly controlled by the circadian clock, we decided to study the rhythmic expression of genes in the hippocampus, a brain structure which plays a key role in memory in humans and rodents. ⋯ Interestingly, these hippocampal CCC genes were highly enriched in sleep/wakefulness-related genes. We show here that several genes in the glucocorticoid signaling pathway, which is involved in memory, show a CCC pattern of expression. However, ID genes were not enriched among these CCC genes, suggesting that sleep or learning and memory disturbances observed in patients with ID are probably not related to the circadian clock in the hippocampus.
-
Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. ⋯ In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals.
-
Interleukin-33 (IL-33) is usually expressed in the nucleus as a non-histone chromatin-associated protein. After passively released by necrotic cells, it functions as an IL-1 family member. IL-33 is highly expressed in the central nervous system (CNS), whether IL-33 is actively released in the CNS and involved in experimental autoimmune encephalomyelitis (EAE) remains unclear. ⋯ Our data demonstrated that IL-33 was released by activated astrocytes actively, and by damaged neurons during EAE. It plays a suppressive role in EAE development via an autocrine or paracrine manner. Our findings are helpful to understand the release feature and function of the CNS-derived IL-33 and supply a potential therapeutic target for multiple sclerosis.