Neuroscience
-
Wobbler mutant mice suffer from progressive motoneuron degeneration and glial cell reactivity in the spinal cord. To prevent development of these abnormalities, we employed Nestorone, a high-affinity progesterone receptor agonist endowed with neuroprotective, promyelinating and anti-inflammatory activities in experimental brain ischemia, preventing neuroinflammation and chemical degeneration. Five-month-old Wobbler mice (wr-/wr-) received s.c. injections of 200μg/day/mouse of Nestorone in vegetable oil or vehicle for 10days. ⋯ In Nestorone-treated Wobblers, Iba1+ microgliosis subsided, whereas CD11b, TNFα and iNOS mRNAs were down-regulated. NFκB mRNA was increased in Wobbler spinal cord and decreased by Nestorone, whereas expression of its inhibitor IκBα was increased in Nestorone-treated Wobblers compared to control mice and vehicle-treated Wobblers. In conclusion, our results showed that Nestorone restraining effects on proinflammatory mediators, microgliosis and astrogliosis may support neurons in their resistance against degenerative processes.
-
Filial imprinting in precocial birds is a useful model for studying early learning and cognitive development, as it is characterized by a well-defined sensitive or critical period. We recently showed that the thyroid hormone 3,5,3'-triiodothyronine (T3) determines the onset of the sensitive period. Moreover, exogenous injection of T3 into the intermediate medial mesopallium (IMM) region (analogous to the associative cortex in mammals) enables imprinting even on post-hatch day 4 or 6 when the sensitive period has been terminated. ⋯ These results suggest that the IMHA is critical for memory acquisition downstream following T3 action in the IMM and further, that it receives and retains information stored in the IMM for recall. Furthermore, both an avian adeno-associated viral construct containing an anterograde tracer (wheat-germ agglutinin) and a retrograde tracer (cholera toxin subunit B) revealed neural connections from the IMM to the IMHA. Taken together, our findings suggest that hierarchical processes from the primary area (IMM) to the secondary area (IMHA) are required for imprinting.
-
Sleep is strongly implicated in learning, especially in the reprocessing of recently acquired memory. Children with intellectual disability (ID) tend to have sleep-wake disturbances, which may contribute to the pathophysiology of the disease. Given that sleep is partly controlled by the circadian clock, we decided to study the rhythmic expression of genes in the hippocampus, a brain structure which plays a key role in memory in humans and rodents. ⋯ Interestingly, these hippocampal CCC genes were highly enriched in sleep/wakefulness-related genes. We show here that several genes in the glucocorticoid signaling pathway, which is involved in memory, show a CCC pattern of expression. However, ID genes were not enriched among these CCC genes, suggesting that sleep or learning and memory disturbances observed in patients with ID are probably not related to the circadian clock in the hippocampus.
-
Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. ⋯ We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation.
-
Measures of psychopathy have been proved to be valuable for risk assessment in violent criminals. However, the neuronal basis of psychopathy and its contribution to the prediction of criminal recidivism is still poorly understood. We compared structural imaging data from 40 male high-risk violent offenders and 37 non-delinquent healthy controls via voxel-based morphometry. ⋯ In contrast, GMV of (para)limbic areas (orbitofrontal cortex, insula) was positively correlated with anti-sociality and risk of violence recidivism. The current investigation revealed that in violent offenders deviations in GMV of the PFC as well as areas involved in the motor component of impulse control (cerebellum, basal ganglia, SMA) are differentially related to psychopathic traits and the risk of violence recidivism. The results might be valuable for improving existing risk assessment tools.