Neuroscience
-
Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). ⋯ Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.
-
Comparative Study
Greater ethanol inhibition of presynaptic dopamine release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors.
The mesolimbic dopamine system, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc), has been heavily implicated in the reinforcing effects of ethanol. Recent slice voltammetry studies have shown that ethanol inhibits dopamine release selectively during high-frequency activity that elicits phasic dopamine release shown to be important for learning and reinforcement. Presently, we examined ethanol inhibition of electrically evoked NAc dopamine in two mouse strains with divergent dopamine responses to ethanol, C57BL/6 (C57) and DBA/2J (DBA) mice. ⋯ Mecamylamine and DhβE decreased dopamine release and reduced ethanol's inhibitory effects on dopamine in both DBA and C57 mice. Further, α-conotoxin also reduced the dopamine release and the dopamine-inhibiting effects of ethanol at the 80 mM, but not 160 mM, concentration. These data suggest that ethanol is acting in part through nicotinic acetylcholine receptors, or downstream effectors, to reduce dopamine release during high-frequency activity.
-
The zebrafish olfactory system is a valuable model for examining neural regeneration after damage due to the remarkable plasticity of this sensory system and of fish species. We applied detergent to the olfactory organ and examined the effects on both morphology and function of the olfactory system in adult zebrafish. Olfactory organs were treated once with Triton X-100 unilaterally to study glomerular innervation patterns or bilaterally to study odor detection. ⋯ At 10 days post-lesion, these fish had regained the ability to detect bile salts. Thus, the changes seen in bulbar innervation patterns correlated to odorant-mediated behavior. We show that the adult zebrafish brain has the capacity to recover rapidly from detergent damage of the olfactory epithelium, with both glomerular distribution and odorant-mediated behavior returning in 10 days.
-
Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. ⋯ These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these findings support the hypothesis that acute neurosteroid actions can propagate within and between neural circuits to modulate their functional connectivity.
-
Behavioral flexibility is known to be mediated by corticostriatal systems and to involve several major neurotransmitter signaling pathways. The current study investigated the effects of inactivation of glutamatergic N-methyl-D-aspartate-(NMDA) receptor signaling in the dorsal striatum on behavioral flexibility in mice. NMDA-receptor inactivation was achieved by virus-mediated inactivation of the Grin1 gene, which encodes the essential NR1 subunit of NMDA receptors. ⋯ Inactivation of NMDA-receptors in all neurons of the dorsal striatum did not affect learning of the initial rule or reversal learning, but impaired shifting from one strategy to another. Strategy shifting was also compromised when NMDA-receptors were inactivated only in dynorphin-expressing neurons in the dorsal striatum, which represent the direct pathway. These data suggest that NMDA-receptor-mediated synaptic plasticity in the dorsal striatum contributes to strategy shifting and that striatal projection neurons of the direct pathway are particularly relevant for this process.