Neuroscience
-
Relaxin is an essential pregnancy-related hormone with broad peripheral effects mediated by activation of relaxin-like family peptide 1 receptors (RXFP1). More recent studies suggest an additional role for relaxin as a neuropeptide, with RXFP1 receptors expressed in numerous brain regions. Neurons in an area of the brainstem known as the nucleus incertus (NI) produce relaxin 3 (RLN3), the most recently identified neuropeptide in the relaxin family. ⋯ Cognitive and emotional processes regulated by activity within the HI and AMYG are modulated by both sex and age. The vast majority of studies exploring the influence of sex on age-related changes in the HI and AMYG have focused on sex hormones, with few studies examining the role of neuropeptides. The current findings suggest that changes in relaxin family peptides may contribute to the significant sex differences observed in these brain regions as a function of aging.
-
In previous studies that used compacted DNA nanoparticles (DNP) to transfect cells in the brain, we observed higher transgene expression in the denervated striatum when compared to transgene expression in the intact striatum. We also observed that long-term transgene expression occurred in astrocytes as well as neurons. Based on these findings, we hypothesized that the higher transgene expression observed in the denervated striatum may be a function of increased gliosis. ⋯ In addition, we observed significantly higher transgene expression in the denervated striatum of old rats when compared to young rats following injections of both types of DNPs. Stereological analysis of GFAP+ cells in the striatum confirmed an increase of GFAP+ cells in the denervated striatum when compared to the intact striatum and also an age-related increase; importantly, increases in GFAP+ cells closely matched the increases in GDNF transgene levels. Thus neurodegeneration and aging may lay a foundation that is actually beneficial for this particular type of gene therapy while other gene therapy techniques that target neurons are actually targeting cells that are decreasing as the disease progresses.
-
Previous work has implicated the transcription factor, ΔFosB, acting in the nucleus accumbens, in mediating the pro-rewarding effects of drugs of abuse such as cocaine as well as in mediating resilience to chronic social stress. However, the transgenic and viral gene transfer models used to establish these ΔFosB phenotypes express, in addition to ΔFosB, an alternative translation product of ΔFosB mRNA, termed Δ2ΔFosB, which lacks the N-terminal 78 aa present in ΔFosB. ⋯ Overexpression of full length FosB, the other major product of the FosB gene, also has no effect. These findings confirm the unique role of ΔFosB in the nucleus accumbens in controlling responses to drugs of abuse and stress.
-
Comparative Study
Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex.
The cerebral cortex is an indispensable region that is involved in higher cognitive function in the mammalian brain, and is particularly evolved in the primate brain. It has been demonstrated that cortical areas are formed by both innate and activity-dependent mechanisms. However, it remains unknown what molecular changes induce cortical expansion and complexity during primate evolution. ⋯ Compared to the marmoset brain, there were no clear regional differences and constant or reduced Gadd45 expression was seen between juvenile and adult mouse brain. Double staining with a neuronal marker revealed that most Gadd45-expressing cells were NeuN-positive neurons. Thus, these results suggest the possibility that differential Gadd45 expression affects neurons, contributing cortical evolution and diversity.
-
The effects of motilin on voltage-dependent K+ currents in hippocampal neurons with the addition of L-arginine (L-AA), D-arginine (D-AA) and N-nitro-L-arginine methyl ester (L-NAME) were investigated in this study. ⋯ The inhibiting effects of motilin on the voltage-dependent K+ current in hippocampal neurons indicate that motilin acts as a regulatory factor for the nitric oxide pathway.