Neuroscience
-
White matter (WM) impairment and motor deficit after stroke are directly related. However, WM injury mechanisms and their relation to motor disturbances are still poorly understood. In humans, the anterior choroidal artery (AChA) irrigates the internal capsule (IC), and stroke to this region can induce isolated motor impairment. ⋯ Behavioral analysis was performed using a neurologic score previously developed and our own scoring method. Marmosets showed a decreased score that was still evident at day 10 after AChA electrocoagulation. We developed a new approach able to induce damage to the marmoset IC that may be useful for the detailed study of WM impairment and behavioral changes after stroke in the nonhuman primate.
-
There is ample evidence that both lateral/dorsolateral periaqueductal gray (l/dlPAG) and basolateral amygdala (BLA) are essential for the regulation of the autonomic responses evoked during innate reactions to threatening stimuli. However, it is not well established to what extent the BLA regulates the upstream functional connection from the l/dlPAG. Here we evaluated the role of the BLA and its glutamatergic receptors in the cardiovascular responses induced by l/dlPAG stimulation in rats. ⋯ Finally, the inhibition of the central amygdala neurons failed to reduce the cardiovascular changes induced by l/dlPAG activation. These results indicate that physiological responses elicited by l/dlPAG activation require the neuronal activity in the BLA. This ascending excitatory pathway from the l/dlPAG to the BLA might ensure the expression of the autonomic component of the defense reaction.
-
Orexins are bioactive peptides, which have been shown to play a pivotal role in vigilance state transitions: the loss of orexin-producing neurons (orexin neurons) leads to narcolepsy with cataplexy in the human. However, the effect of the need for sleep (i.e., sleep pressure) on orexin neurons remains largely unknown. Here, we found that immunostaining intensities of the α1 subunit of the GABAA receptor and neuroligin 2, which is involved in inhibitory synapse specialization, on orexin neurons of mouse brain were significantly increased by 6-h sleep deprivation. ⋯ Using a slice patch recording, orexin neurons demonstrated increased sensitivity to a GABAA receptor agonist together with synaptic plasticity changes after sleep deprivation when compared with an ad lib sleep condition. In summary, the GABAergic input property of orexin neurons responds rapidly to sleep deprivation. This molecular response of orexin neurons may thus play a role in the changes that accompany the need for sleep following prolonged wakefulness, in particular the decreased probability of a transition to wakefulness once recovery sleep has begun.
-
It has anatomically been revealed that the rostral part of the rat primary somatosensory cortex (S1) directly projects to the dorsal part of the trigeminal oral subnucleus (dorVo) and the dorsal part of juxtatrigeminal region (dorVjuxt), and that the dorVo and dorVjuxt contain premotoneurons projecting directly to the jaw-opening or jaw-closing motoneurons in the trigeminal motor nucleus (Vmo). However, little is known about how the rostral S1 regulates jaw movements in relation to its corticofugal projections. To address this issue, we performed intracortical microstimulation of the rat rostral S1 by monitoring jaw movements and electromyographic (EMG) activities. ⋯ We also found that the effective sites for the two kinds of train stimuli were included in the rostral S1 area, which has previously been identified to send direct projections to the dorVo or the dorVjuxt. Specifically, the most effective stimulation sites for the two kinds of train stimuli were located in the rostralmost part of S1 which has been reported to emanate strong direct projections to the dorVjuxt but less to the dorVo. Therefore, the present study suggests that the rat rostral S1, especially its rostralmost part, plays an important role in controlling jaw movements by activation of direct descending projections from the rostral S1 to the trigeminal premotoneuron pools, especially to the dorVjuxt.
-
Neural cross-sensitization has been postulated as a mechanism underlying overlaps of chronic pelvic pain disorders such as bladder pain syndrome/interstitial cystitis (BPS/IC) and irritable bowel syndrome (IBS). Animals with experimental colitis have been used to study the underlying mechanisms for overlapped pelvic pain symptoms, and shown to exhibit bladder overactivity evidenced by frequent voiding; however, it has not directly been evaluated whether pain sensation derived from the lower urinary tract is enhanced in colitis models. Also, the cross-sensitization between the colon and urethra has not been studied previously. ⋯ Transient receptor potential vanilloid 1 (TRPV1) mRNA expression was significantly increased in, the bladder, urethra and S1 DRG in colitis rats. An increase in myeloperoxidase (MPO) activity was found in the colon, but not in the bladder or urethra after intracolonic TNBS treatment. These results indicate that TNBS-induced colitis increased pain sensitivity in the bladder and urethra via activation of C-fiber afferent pathways due to colon-to-bladder and colon-to-urethral cross-sensitization, suggesting the contribution of pelvic organ cross-sensitization mechanisms to overlapped pain symptoms in BPS/IC and IBS.