Neuroscience
-
Eider duck (Somateria mollissima) cerebellar neurons are highly tolerant toward hypoxia in vitro, which in part is due to a hypoxia-induced depression of their spontaneous activity. We have studied whether this response involves ATP-sensitive potassium (KATP) channels, which are known to be involved in the hypoxic/ischemic defense of mammalian neural and muscular tissues, by causing hyperpolarization and reduced ATP demand. Extracellular recordings in the Purkinje layer of isolated normoxic eider duck cerebellar slices showed that their spontaneous neuronal activity decreased significantly compared to in control slices when the KATP channel opener diazoxide (600 μM) was added (F1,70=92.781, p<0.001). ⋯ The spontaneous activity of slices treated with tolbutamide in combined hypoxia/chemical anoxia (95% N2-5% CO2 and 2 mM NaCN) was not significantly different from that of control slices (F1,203=0.071, p=0.791). Recovery from hypoxia/anoxia was, however, slightly but significantly weaker in tolbutamide-treated slices than in control slices (F1,137=15.539, p<0.001). We conclude that KATP channels are present in eider duck cerebellar neurons and are activated in hypoxia/anoxia, but that they do not play a key role in the protective shut-down response to hypoxia/anoxia.
-
Extracellular matrix (ECM) accumulates around different neuronal compartments of the central nervous system (CNS) or appears in diffuse reticular form throughout the neuropil. In the adult CNS, the perineuronal net (PNN) surrounds the perikarya and dendrites of various neuron types, whereas the axonal coats are aggregations of ECM around the individual synapses, and the nodal ECM is localized at the nodes of Ranvier. Previous studies in our laboratory demonstrated on rats that the heterogeneous distribution and molecular composition of ECM is associated with the variable cytoarchitecture and hodological organization of the vestibular nuclei and may also be related to their specific functions in gaze and posture control as well as in the compensatory mechanisms following vestibular lesion. ⋯ We have observed positive ECM reaction for the hyaluronan, tenascin-R, hyaluronan and proteoglycan link protein 1 (HAPLN1) and various chondroitin sulfate proteoglycans. The staining intensity and distribution of ECM molecules revealed a number of differences between the functionally different subnuclei of IO. We hypothesized that the different molecular composition and intensity differences of ECM reaction is associated with different control mechanisms of gaze and posture control executed by the visuomotor-vestibular, somatosensory and integrative subnuclei of the IO.
-
Brain iron levels are significantly increased in Parkinson's disease (PD) and iron deposition is observed in the substantia nigra (SN) of PD patients. It is unclear whether iron overload is an initial cause of dopaminergic neuronal death or merely a byproduct that occurs in the SN of PD patients. In this study, ceruloplasmin knockout (CP-/-) mice and mice receiving an intracerebroventricular injection of ferric ammonium citrate (FAC) were selected as mouse models with high levels of brain iron. ⋯ The intracerebroventricular injection of deferoxamine (DFO) significantly alleviated the neuronal damage caused by MPTP in CP-/- mice. Furthermore, our findings suggest that the increased nigral iron content exacerbates the oxidative stress levels, promoting apoptosis through the Bcl-2/Bax pathway and the activated caspase-3 pathway in the brain. Therefore, iron overload in the brain exacerbates dopaminergic neuronal death in SNpc and leads to the onset of PD.
-
Dorsal vagal complex (DVC) AMPK regulation of food intake in the estradiol-treated ovariectomized (OVX) female rat is energy state-dependent. Here, RT-PCR array technology was used to identify estradiol-sensitive AMPK-regulated DVC signal transduction pathways that exhibit differential reactivity to sensor activation during energy balance versus imbalance. The AMP mimetic AICAR correspondingly reduced or stimulated cDVC phosphoAMPK (pAMPK) and estrogen receptor-beta (ERβ) proteins in full-fed (F) versus 12-h food-deprived (D) estradiol-treated ovariectomized (OVX) rats, but elevated ER-alpha (ERα) in F only. ⋯ Conversely, genes in these six pathways were up-regulated by AICAR treatment of D. Results show that in this animal model, acute AMP augmentation or feeding cessation each inhibit both pAMPK and ERβ expression, but in combination increase these protein profiles. pAMPK protein and DVC TNF (NFκB), SOCS3 (JAK/STAT), WNT6 (Hedgehog), and FABP1 (PPAR) mRNAs were down- or upregulated in parallel by AICAR in F versus D states, respectively. Further research is needed to determine the impact of ERβ on opposing directionality of these responses, and to characterize the role of the aforementioned signaling pathways in hyperphagic responses in the female to AICAR-induced DVC AMPK activation during acute interruption of feeding.
-
Neuritis can cause pain hypersensitivities in the absence of axonal degeneration. Such hypersensitivities are reputed to be maintained by ongoing activity into the spinal cord, which, in the neuritis model, is mainly generated from intact C-fiber neurons. The hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels has been implicated in nerve injury-induced pain hypersensitivities. ⋯ Immunohistochemical examination of the HCN2 channel subtype within the L5 dorsal root ganglia revealed an increase in expression in neuronal cell bodies of all sizes post-neuritis. In conclusion, HCN channels contribute to the development of neuritis-induced heat hypersensitivity and ongoing activity. Drugs that target HCN channels may be beneficial in the treatment of neuropathic pain in patients with nerve inflammation.