Neuroscience
-
Relaxin is an essential pregnancy-related hormone with broad peripheral effects mediated by activation of relaxin-like family peptide 1 receptors (RXFP1). More recent studies suggest an additional role for relaxin as a neuropeptide, with RXFP1 receptors expressed in numerous brain regions. Neurons in an area of the brainstem known as the nucleus incertus (NI) produce relaxin 3 (RLN3), the most recently identified neuropeptide in the relaxin family. ⋯ Cognitive and emotional processes regulated by activity within the HI and AMYG are modulated by both sex and age. The vast majority of studies exploring the influence of sex on age-related changes in the HI and AMYG have focused on sex hormones, with few studies examining the role of neuropeptides. The current findings suggest that changes in relaxin family peptides may contribute to the significant sex differences observed in these brain regions as a function of aging.
-
Administration of kainic acid induces acute seizures that result in the loss of neurons, gliosis and reorganization of mossy fiber pathways in the hippocampus resembling those observed in human temporal lobe epilepsy. Although these structural changes have been well characterized, the mechanisms underlying the degeneration of neurons following administration of kainic acid remain unclear. Since the lysosomal enzymes, cathepsins B and D, are known to be involved in the loss of neurons and clearance of degenerative materials in a variety of experimental conditions, we evaluated their potential roles in kainic acid-treated rats. ⋯ These changes were accompanied by appearance of cleaved caspase-3-positive neurons in the hippocampus of kainic acid-treated animals. The levels of IGF-II/M6P receptors, on the other hand, were not significantly altered, but these receptors were found to be present in a subset of reactive astrocytes following administration of kainic acid. These results, taken together, suggest that enhanced levels/expression and activity of lysosomal enzymes may have a role in the loss of neurons and/or clearance of degenerative materials observed in kainic acid-treated rats.
-
Deciphering the molecular pathways involved in myelin gene expression is a major point of interest to better understand re/myelination processes. In this study, we investigated the role of Lithium Chloride (LiCl), a drug largely used for the treatment of neurological disorders, on the two major central myelin gene expression (PLP and MBP) in mouse oligodendrocytes. We show that LiCl enhances the expression of both PLP and MBP, by increasing mRNA amount and promoter activities. ⋯ Finally, we show that LiCl can stimulate oligodendrocyte morphological maturation, and promote remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Our data provide mechanistic evidences that Akt/CREB together with β-catenin participate in the transcriptional control of PLP and MBP exerted by LiCl. Therefore, the use of LiCl to balance between β-catenin and CREB effectors could be considered as an efficient remyelinating strategy.
-
Comparative Study
Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia.
Motor deficits are present in cardiac arrest survivors and injury to cerebellar Purkinje cells (PCs) likely contribute to impairments in motor coordination and post-hypoxic myoclonus. N-Methyl-D-aspartic acid (NMDA) receptor-mediated excitotoxicity is a well-established mechanism of cell death in several brain regions, but the role of NMDA receptors in PC injury remains understudied. Emerging data in cortical and hippocampal neurons indicate that the GluN2A-containing NMDA receptors signal to improve cell survival and GluN2B-containing receptors contribute to neuronal injury. ⋯ The subunit promiscuous NMDA receptor antagonist MK-801 protected both CA1 neurons and PCs from ischemic injury following CA/CPR, demonstrating a role for NMDA receptor activation in injury to both brain regions. In contrast, the GluN2B antagonist, Co 101244, had no effect on PC loss while protecting against injury in the CA1 region. These data indicate that ischemic injury to cerebellar PCs progresses via different cell death mechanisms compared to hippocampal CA1 neurons.