Neuroscience
-
Converging evidence suggests that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cellular function by regulating actin dynamics. In the present study we investigate the role of LRRK2 in functional synaptic terminals of adult LRRK2-knockout and LRRK2(R1441G)-transgenic mice as well as in primary fibroblasts of LRRK2(G2019S) mutation carriers. We show that lack of LRRK2 decreases and overexpression of mutant LRRK2 age-dependently increases the effect of the actin depolymerizing agent Latrunculin A (LatA) on the synaptic cytoskeleton. ⋯ Our data suggest that LRRK2 alters actin dynamics and F-actin structure both in brain neurons and skin fibroblasts. We hypothesize that increased F-actin bundling represents a compensatory mechanism to protect F-actin from the depolymerizing effect of mutant LRRK2 under basal conditions. Our data further indicate that LRRK2-dependent changes in the cytoskeleton might have functional consequences on postsynaptic NMDA receptor localization.
-
Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. ⋯ Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration.
-
Sepsis is a severe systemic inflammatory disorder that rapidly activates the sympathetic nervous system to enhance catecholamine secretion from postganglionic sympathetic neurons and adrenal chromaffin cells. Although an increase in preganglionic drive to postganglionic sympathetic tissues has been known to contribute to this response for quite some time, only recently was it determined that sepsis also has direct effects on adrenal chromaffin cell Ca2+ signaling and epinephrine release. In the present study, we characterized the direct effects of sepsis on postganglionic sympathetic neuron function. ⋯ A similar increase in the amplitude of high-K+-stimulated Ca2+ transients was observed during the cecal ligation and puncture model of sepsis. The enhanced excitability and Ca2+ signaling produced during sepsis likely amplify the effect of increased preganglionic drive on norepinephrine release from postganglionic neurons. This is important, as sympathetic neurons are integral to the anti-inflammatory autonomic reflex that is activated during sepsis.
-
The hippocampus has been established as a site of plasticity during the acquisition of spatial memory. The memory for spatial locations is impaired in patients who develop hepatic encephalopathy (HE). We wondered how the hippocampus can manage different hippocampal-dependent tasks in a type B model of the early evolutive phases of HE induced by triple portal vein ligation. ⋯ Our behavioral results showed impairments in the acquisition of both tasks by the portal hypertension group compared with the sham-operated group. To label brain areas related to these tasks, we marked the expression of the c-Fos protein and revealed high c-Fos immunoreactivity in cornu ammonis 1 (CA1), cornu ammonis 3 (CA3) and entorhinal (Ent) cortex of the PH group compared with the SHAM group in the object-place recognition task and a decrease in c-Fos-positive cells in the reversal task in the CA1, CA3, dentate gyrus (DG), cingulate (CG), prelimbic (PL), and infralimbic (IL) cortices in the PH group compared with the SHAM group. In conclusion, the study corroborated the pivotal role of the hippocampus in spatial memory deficits found in the early stages of type B HE and noted its differential contribution in each of the tasks.
-
Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. ⋯ Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber's hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions.