Neuroscience
-
Early degeneration of pedunculopontine nucleus (PPN) is considered part of changes that characterize premotor stages of Parkinson's disease (PD). In this paper, the effects of unilateral neurotoxic lesion of the PPN in motor execution and in the development of oxidative stress events in striatal and nigral tissues in rats were evaluated. The motor performance was assessed using the beam test (BT) and the cylinder test (CT). ⋯ This significant increase of CAT EA persisted in the nigral tissue (p<0.001) and reached the striatal tissue (p<0.001) seven days after PPN injury. Also at seven days post-injury PPN, increased concentrations of MDA (p<0.01) and a tendency to decrease in the concentrations of NO in both structures (SNpc and striatum) were found. The events associated with the generation of free radicals at nigral and striatal levels, can be part of the physiological mechanisms underlying motor dysfunction in rats with unilateral PPN neurotoxic lesion.
-
Both central and peripheral sympathetic nervous systems contribute to the cardiovascular effects of dexmedetomidine (DMED), a highly selective and widely used a2-adrenoceptor agonist for sedation, analgesia, and stress management. The central sympatholytic effects are augmented by peripheral inhibition of sympathetic ganglion transmission. The mechanism is not clear. ⋯ In conclusion, DMED dose-dependently inhibits INa and IACh in rat SCG neurons by preferential binding to the inactivated state of the Na(+) channels and the closed state (resting) of nAChR channels respectively. Both inhibitions are a2-adrenoceptor independent. Furthermore, the nAChR channels in rat SCG neurons are much more sensitive to inhibition by DMED than Na(+) channels.
-
Serotonin (5-HT) and norepinephrine (NE) have been implicated in the mediation of endogenous analgesic mechanisms via the descending inhibitory pain pathway in the brain, and dysfunction in both the 5-HT and NE systems has been suggested as an etiology of fibromyalgia (FM). Given that 5-HT reuptake inhibition in the brain appears to be associated with pain reduction, this mechanism might exert an analgesic effect also on pain associated with FM. In this case, it would be of interest to investigate the correlation of 5-HT transporter (SERT) occupancy with in vivo analgesic effect on pain associated with FM. ⋯ This finding concerning the precise correlation of SERT occupancy with in vivo analgesic effect on pain associated with FM is reported here for the first time. SERT occupancy level above 70% was necessary for AS1069562 and duloxetine to exert significant analgesic effects on muscular pain. These results suggest that SERT occupancy level is useful in determining appropriate analgesic doses of AS1069562 and duloxetine for treating pain symptoms in FM patients.
-
The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. ⋯ Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors.
-
Polypeptides produced in the gastrointestinal tract, stomach, adipocytes, pancreas and brain that influence food intake are referred to as 'feeding-related' peptides. Most peptides that influence feeding exert an inhibitory effect (anorexigenic peptides). In contrast, only a few exert a stimulating effect (orexigenic peptides), such as ghrelin. ⋯ VTA dopamine neurons encode cues that predict rewards and phasic release of dopamine in the ventral striatum motivates animals to forage for food. To elucidate how feeding-related peptides regulate reward pathways is of importance to reveal the mechanisms underlying non-homeostatic or hedonic feeding. Here, we review the current knowledge of how anorexigenic peptides and orexigenic peptides act within the VTA.