Neuroscience
-
We have previously demonstrated that recombinant T-cell receptor ligand 1000 (RTL1000) reduces infarct size and improves long-term functional recovery after experimental stroke in young transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). In this study, we determined the effect of RTL1000 on infarct size in 12-month-old middle-aged DR2-Tg mice, and investigated its mechanism of action. Twelve-month-old male DR2-Tg mice underwent 60min of intraluminal reversible middle cerebral artery occlusion (MCAO). ⋯ RTL1000 decreased the number of activated monocytes/microglia cells (CD11b(+)CD45(hi)) and CD3(+) T cells in the ischemic hemisphere. RTL1000 also reduced the percentage of total T cells and inflammatory neutrophils in the spleen. These findings suggest that RTL1000 protects against ischemic stroke in middle-aged male mice by limiting post-ischemic inflammation.
-
Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). ⋯ Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the DG at ⩾P95. In contrast, seizures between P20 and P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the DG compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-30 as a potential critical period in hippocampal development defined by distinctive long-term structural and functional properties in adult hippocampal circuitry, including loss of capacity for seizure-induced plasticity in adulthood that could influence epileptogenesis and other hippocampal-dependent behaviors and functional properties.
-
The endocannabinoid system mainly consists of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), their endogenous ligands termed endocannabinoids (eCBs), and the enzymes responsible for the synthesis and degradation of eCBs. These cannabinoid receptors have been well characterized in rodent and monkey retinae. Here, we investigated the expression and localization of the eCB system beyond the retina, namely the first thalamic relay, the dorsal lateral geniculate nucleus (dLGN), of vervet monkeys using immunohistochemistry methods. ⋯ These proteins are weakly expressed in the koniocellular layers. These results suggest that the presence of the eCB system throughout the layers of the dLGN may represent a novel site of neuromodulatory action in normal vision. The larger amount of CB1R in the dLGN magnocellular layers may explain some of the behavioral effects of cannabinoids associated with the integrity of the dorsal visual pathway that plays a role in visual-spatial localization and motion perception.
-
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. ⋯ In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
-
Hemodialysis (HD) is considered the most common alternative for overcoming renal failure. Studies have shown the involvement of HD membrane in the genesis of oxidative stress (OS) which has a direct impact on the brain tissue and is expected to be involved in brain plasticity and also reorganization of brain function control. The goal of this paper was to demonstrate the sensitivity of the blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) to characterize the OS before and after the HD session. ⋯ OS is systematically increased in HD-patients after the HD-process. Indeed, the BOLD-fMRI shows a remarkable sensitivity to brain plasticity studied cortical areas. Our results confirm the superiority of the BOLD-fMRI quantities compared to the biological method used for assessing the OS while not being specific, and reflect the increase in OS generated by the HD. BOLD-fMRI is expected to be a suitable tool for evaluating the plasticity process evolution in hemodialysis brain patients.