Neuroscience
-
We have previously demonstrated that recombinant T-cell receptor ligand 1000 (RTL1000) reduces infarct size and improves long-term functional recovery after experimental stroke in young transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). In this study, we determined the effect of RTL1000 on infarct size in 12-month-old middle-aged DR2-Tg mice, and investigated its mechanism of action. Twelve-month-old male DR2-Tg mice underwent 60min of intraluminal reversible middle cerebral artery occlusion (MCAO). ⋯ RTL1000 decreased the number of activated monocytes/microglia cells (CD11b(+)CD45(hi)) and CD3(+) T cells in the ischemic hemisphere. RTL1000 also reduced the percentage of total T cells and inflammatory neutrophils in the spleen. These findings suggest that RTL1000 protects against ischemic stroke in middle-aged male mice by limiting post-ischemic inflammation.
-
The present study investigated the effects of chronic social defeat stress on several behavioral parameters, and the expression of dopaminergic markers, i.e., dopamine D1 receptors (D1Rs), dopamine D2 receptors (D2Rs), and dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein-32 (DARPP-32), in the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HIP) of mouse brains. After 10days of social defeat stress, the defeated mice were divided into two groups: one group underwent a series of behavioral tests. The other group was sacrificed on the 11th day and tissue samples were collected for Western blotting. ⋯ No significant differences in D1Rs and D2Rs expression were shown between defeated and control mice in any area studied. A significantly increased expression in total DARPP-32, and phospho-DARPP-32 was observed in the PFC or AMY of defeated mice. These data suggest that alterations in dopaminergic markers may be involved in anxiety- and depression-like behaviors, and cognitive impairment induced by social defeat stress.
-
Drug addiction is associated with dysfunction in the medial prefrontal cortex (mPFC). However, the modifications of neuronal activity in mPFC underlying the reinforcing properties of addictive drugs are still unclear. Here we carried out single-unit recording experiments to study the neuronal activity in the prelimbic (PL) cortex of anesthetized rats, after expression of locomotor sensitization to amphetamine. ⋯ Moreover, in control rats, acute amphetamine decreased burst rate, whereas in sensitized rats acute amphetamine increased burst rate. These findings indicate that amphetamine sensitization renders mPFC neurons hyperexcitable. Taken together, these data support the hypothesis that early withdrawal is associated with an increase in the activity of the mPFC, which could strengthen the PL-Nucleus Accumbens connection, thus facilitating amphetamine-induced locomotor sensitization.
-
The endocannabinoid system mainly consists of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), their endogenous ligands termed endocannabinoids (eCBs), and the enzymes responsible for the synthesis and degradation of eCBs. These cannabinoid receptors have been well characterized in rodent and monkey retinae. Here, we investigated the expression and localization of the eCB system beyond the retina, namely the first thalamic relay, the dorsal lateral geniculate nucleus (dLGN), of vervet monkeys using immunohistochemistry methods. ⋯ These proteins are weakly expressed in the koniocellular layers. These results suggest that the presence of the eCB system throughout the layers of the dLGN may represent a novel site of neuromodulatory action in normal vision. The larger amount of CB1R in the dLGN magnocellular layers may explain some of the behavioral effects of cannabinoids associated with the integrity of the dorsal visual pathway that plays a role in visual-spatial localization and motion perception.
-
Comparative Study
GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice.
Inhibitory neurotransmitters, γ-aminobutyric acid (GABA) and glycine, are transported into synaptic vesicles by the vesicular GABA transporter (VGAT). Glutamate decarboxylase (GAD) is a GABA-synthesizing enzyme and two isoforms of GAD, GAD65 and GAD67 are encoded by two independent genes. There was virtually no GABA content in GAD65/GAD67 double knockout (GADs DKO) mouse brains. ⋯ The severity of cleft palate and omphalocele was evaluated by elevation of palate shelves and size and liver inclusion of omphalocele, respectively. We observed that the phenotypes of cleft palate and omphalocele in GADs DKO mice were more and less severe than those in GAD67 KO and VGAT KO mice, respectively. These results indicate the significant contribution of not only GAD65-mediated GABAergic but also glycinergic transmissions to both palate and abdominal wall formations.